首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Motivated by models from stochastic population biology and statistical mechanics, we proved new inequalities of the form (1) ?(eAeB)??(eA+B), where A and B are n × n complex matrices, 1<n<∞, and ? is a real-valued continuous function of the eigenvalues of its matrix argument. For example, if A is essentially nonnegative, B is diagonal real, and ? is the spectral radius, then (1) holds; if in addition A is irreducible and B has at least two different diagonal elements, then the inequality (1) is strict. The proof uses Kingman's theorem on the log-convexity of the spectral radius, Lie's product formula, and perturbation theory. We conclude with conjectures.  相似文献   

2.
Let A be a real or complex n × n interval matrix. Then it is shown that the Neumann series Σk=0Ak is convergent iff the sequence {Ak} converges to the null matrix O, i.e., iff the spectral radius of the real comparison matrix B constructed in [2] is less than one.  相似文献   

3.
4.
Suppose each of m, n, and k is a positive integer, k ? n, A is a (real-valued) symmetric n-linear function on Em, and B is a k-linear symmetric function on Em. The tensor and symmetric products of A and B are denoted, respectively, by A ?B and A?B. The identity
6A · B62=q=0n(nk)(n+kk)6A?qB62
is proven by Neuberger in [1]. An immediate consequence of this identity is the inequality
6A · B 62?n+kn?16A · B 62
In this paper a necessary and sufficient condition for
6A · B 62=n+kn?6A · B 62
is given. It is also shown that under certain conditions the inequality can be considerably improved. This improvement results from an analysis of the terms 6A?qB6, 1?q?n, appearing in the identity.  相似文献   

5.
It is shown, for n ? m ? 1, that there exist inner maps Φ: BnBm with boundary values Φ1: Bn → Bm such that σm(A) = σn1?1(A)). where σn and σm are the Haar measures on ?Bn and ?Bm, respectively, and A ? Bn is an arbitrary Borel set.  相似文献   

6.
Let A and B be n-by-n Hermitian matrices over the complex field. A result of Au-Yeung [1] and Stewart [8] states that if
x1(A + iB)x≠0
for all nonzero n-vectors x, then there is a linear combination of A and B which is positive definite. In this article we present an algorithm which finds such a linear combination in a finite number of steps. We also discuss the implementation of the algorithm in case A and B are real symmetric sparse matrices.  相似文献   

7.
It is shown that if A and B are n × n complex matrices with A = A1and ∥AB ? BA∥</ 2?2(n ? 1), then there exist n × n matrices A′ and B′ with A′ = A′1such that A′B′ = B′A′ and ∥A ? A′∥? ?, ∥B ? B′∥? ?.  相似文献   

8.
For a sequence A = {Ak} of finite subsets of N we introduce: δ(A) = infm?nA(m)2n, d(A) = lim infn→∞ A(n)2n, where A(m) is the number of subsets Ak ? {1, 2, …, m}.The collection of all subsets of {1, …, n} together with the operation a ∪ b, (a ∩ b), (a 1 b = a ∪ b ? a ∩ b) constitutes a finite semi-group N (semi-group N) (group N1). For N, N we prove analogues of the Erdös-Landau theorem: δ(A+B) ? δ(A)(1+(2λ)?1(1?δ(A>))), where B is a base of N of the average order λ. We prove for N, N, N1 analogues of Schnirelmann's theorem (that δ(A) + δ(B) > 1 implies δ(A + B) = 1) and the inequalities λ ? 2h, where h is the order of the base.We introduce the concept of divisibility of subsets: a|b if b is a continuation of a. We prove an analog of the Davenport-Erdös theorem: if d(A) > 0, then there exists an infinite sequence {Akr}, where Akr | Akr+1 for r = 1, 2, …. In Section 6 we consider for N∪, N∩, N1 analogues of Rohrbach inequality: 2n ? g(n) ? 2n, where g(n) = min k over the subsets {a1 < … < ak} ? {0, 1, 2, …, n}, such that every m? {0, 1, 2, …, n} can be expressed as m = ai + aj.Pour une série A = {Ak} de sous-ensembles finis de N on introduit les densités: δ(A) = infm?nA(m)2m, d(A) = lim infn→∞ A(n)2nA(m) est le nombre d'ensembles Ak ? {1, 2, …, m}. L'ensemble de toutes les parties de {1, 2, …, n} devient, pour les opérations a ∪ b, a ∩ b, a 1 b = a ∪ b ? a ∩ b, un semi-groupe fini N, N ou un groupe N1 respectivement. Pour N, N on démontre l'analogue du théorème de Erdös-Landau: δ(A + B) ? δ(A)(1 + (2λ)?1(1?δ(A))), où B est une base de N d'ordre moyen λ. On démontre pour N, N, N1 l'analogue du théorème de Schnirelmann (si δ(A) + δ(B) > 1, alors δ(A + B) = 1) et les inégalités λ ? 2h, où h est l'ordre de base. On introduit le rapport de divisibilité des enembles: a|b, si b est une continuation de a. On démontre l'analogue du théorème de Davenport-Erdös: si d(A) > 0, alors il existe une sous-série infinie {Akr}, où Akr|Akr+1, pour r = 1, 2, … . Dans le Paragraphe 6 on envisage pour N, N, N1 les analogues de l'inégalité de Rohrbach: 2n ? g(n) ? 2n, où g(n) = min k pour les ensembles {a1 < … < ak} ? {0, 1, 2, …, n} tels que pour tout m? {0, 1, 2, …, n} on a m = ai + aj.  相似文献   

9.
In a previous paper it was proven that given the continued fractions
A = a1+1a2+1a3+… and B = b1+1b2+1b3+…
where the a's and b's are positive integers, then A, B, A ± B, AB and AB are irrational numbers if an2 > bn > an?15n for all n sufficiently large, and transcendental numbers if an2 > bn > an?19n3 for all n sufficiently large. Using a more direct approach it is proven in this paper that A, B, A ± B, AB and AB are transcendental numbers if an > bn > an?1(n?1)2 for all n sufficiently large.  相似文献   

10.
Let
F(x) = k=onnkAkxk
An ≠ 0,
and
G(x) = k=onnkBkxk
Bn ≠ 0,
be polynomials with real zeros satisfying An?1 = Bn?1 = 0, and let
H(x) = k=on-2nkAkBkxk.
Using the recently proved validity of the van der Waerden conjecture on permanents, some results on the real zeros of H(x) are obtained. These results are related to classical results on composite polynomials.  相似文献   

11.
Our main result is an extension of a theorem due to Novodvorskii and Taylor; we give some special cases. Let A be a commutative Banach algebra with identity, and let Δ be its maximal ideal space. Let B be a Banach algebra with identity; let B?1 denote the invertible group in B and id B denote the set of idempotents in B. Let [(A \?bo B)?1] denote the set of path components of (A \?bo B)?1, and [Δ, B?1] denote the set of homotopy classes of continuous maps of Δ into B?1. We prove that the Gelfand transform on A induces a bijection of [(A \?bo B)?1] onto [Δ, B?1], and extend this result to prove a theorem of Davie. We show that the Gelfand transform induces a bijection of [id(A \?bo B)] onto [Δ, id B], and investigate consequences of this result for specific examples of the Banach algebra B.  相似文献   

12.
We consider the mixed boundary value problem Au = f in Ω, B0u = g0in Γ?, B1u = g1in Γ+, where Ω is a bounded open subset of Rn whose boundary Γ is divided into disjoint open subsets Γ+ and Γ? by an (n ? 2)-dimensional manifold ω in Γ. We assume A is a properly elliptic second order partial differential operator on Ω and Bj, for j = 0, 1, is a normal jth order boundary operator satisfying the complementing condition with respect to A on Γ+. The coefficients of the operators and Γ+, Γ? and ω are all assumed arbitrarily smooth. As announced in [Bull. Amer. Math. Soc.83 (1977), 391–393] we obtain necessary and sufficient conditions in terms of the coefficients of the operators for the mixed boundary value problem to be well posed in Sobolev spaces. In fact, we construct an open subset T of the reals such that, if Ds = {u ? Hs(Ω): Au = 0} then for s ? = 12(mod 1), (B0,B1): Ds → Hs ? 12?) × Hs ? 32+) is a Fredholm operator if and only if s ∈T . Moreover, T = ?xewTx, where the sets Tx are determined algebraically by the coefficients of the operators at x. If n = 2, Tx is the set of all reals not congruent (modulo 1) to some exceptional value; if n = 3, Tx is either an open interval of length 1 or is empty; and finally, if n ? 4, Tx is an open interval of length 1.  相似文献   

13.
It is shown that the set Cm × n of complex m × n matrices forms a lower semilattice under the partial ordering A ? B defined by A1A = A1B, 1AA1 = BA1, where A1 denotes the conjugate transpose of A. As a special case of a result for division rings, it is further shown that, over any field F, form = n = 2 and any proper involution 1 of F2 × 2, the corresponding intersections AB all exist.  相似文献   

14.
Let the n × n complex matrix A have complex eigenvalues λ12,…λn. Upper and lower bounds for Σ(Reλi)2 are obtained, extending similar bounds for Σ|λi|2 obtained by Eberlein (1965), Henrici (1962), and Kress, de Vries, and Wegmann (1974). These bounds involve the traces of A1A, B2, C2, and D2, where B=12 (A + A1), C=12 (A ? A1) /i, and D = AA1 ? A1A, and strengthen some of the results in our earlier paper “Bounds for eigenvalues using traces” in Linear Algebra and Appl. [12].  相似文献   

15.
In this paper iterative schemes for approximating a solution to a rectangular but consistent linear system Ax = b are studied. Let A?Cm × nr. The splitting A = M ? N is called subproper if R(A) ? R(M) and R(A1) ?R(M1). Consider the iteration xi = M2Nxi?1 + M2b. We characterize the convergence of this scheme to a solution of the linear system. When A?Rm×nr, monotonicity and the concept of subproper regular splitting are used to determine a necessary and a sufficient condition for the scheme to converge to a solution.  相似文献   

16.
For an n × n Hermitean matrix A with eigenvalues λ1, …, λn the eigenvalue-distribution is defined by G(x, A) := 1n · number {λi: λi ? x} for all real x. Let An for n = 1, 2, … be an n × n matrix, whose entries aik are for i, k = 1, …, n independent complex random variables on a probability space (Ω, R, p) with the same distribution Fa. Suppose that all moments E | a | k, k = 1, 2, … are finite, Ea=0 and E | a | 2. Let
M(A)=σ=1s θσPσ(A,A1)
with complex numbers θσ and finite products Pσ of factors A and A1 (= Hermitean conjugate) be a function which assigns to each matrix A an Hermitean matrix M(A). The following limit theorem is proved: There exists a distribution function G0(x) = G1x) + G2(x), where G1 is a step function and G2 is absolutely continuous, such that with probability 1 G(x, M(Ann12)) converges to G0(x) as n → ∞ for all continuity points x of G0. The density g of G2 vanishes outside a finite interval. There are only finitely many jumps of G1. Both, G1 and G2, can explicitly be expressed by means of a certain algebraic function f, which is determined by equations, which can easily be derived from the special form of M(A). This result is analogous to Wigner's semicircle theorem for symmetric random matrices (E. P. Wigner, Random matrices in physics, SIAM Review9 (1967), 1–23). The examples ArA1r, Ar + A1r, ArA1r ± A1rAr, r = 1, 2, …, are discussed in more detail. Some inequalities for random matrices are derived. It turns out that with probability 1 the sharpened form
lim supn→∞i=1ni(n)|2?6An62? 0.8228…
of Schur's inequality for the eigenvalues λi(n) of An holds. Consequently random matrices do not tend to be normal matrices for large n.  相似文献   

17.
When A and B are n × n positive semi-definite matrices, and C is an n × n Hermitian matrix, the validity of a quadratic inequality (x1Ax)12(x1Bx)12 ? ¦x1Cx¦ is shown to be equivalent to the existence of an n × n unitary matrix W such that A12WB12 + B12W1A12 = 2C. Some related inequalities are also discussed.  相似文献   

18.
The compactness method to weighted spaces is extended to prove the following theorem:Let H2,s1(B1) be the weighted Sobolev space on the unit ball in Rn with norm
6ν612,s=B1 (1rs)|ν|2 dx + ∫B1 (1rs)|Dν|2 dx.
Let n ? 2 ? s < n. Let u? [H2,s1(B1) ∩ L(B1)]N be a solution of the nonlinear elliptic system
B11rs, i,j=1n, h,K=1N AhKij(x,u) DiuhDK dx=0
, ψ ? ¦C01(B1N, where ¦Aijhk¦ ? L, Aijhk are uniformly continuous functions of their arguments and satisfy:
|η|2 = i=1n, j=1Nij|2 ? i,j=1n, 1rs, h,K=1N AhKijηihηik,?η?RNn
. Then there exists an R1, 0 < R1 < 1, and an α, 0 < α < 1, along with a set Ω ? B1 such that (1) Hn ? 2(Ω) = 0, (2) Ω does not contain the origin; Ω does not contain BR1, (3) B1 ? Ω is open, (4) u is Lipα(B1 ? Ω); u is LipαBR1.  相似文献   

19.
The Schur product of two n×n complex matrices A=(aij), B=(bij) is defined by A°B=(aijbij. By a result of Schur [2], the algebra of n×n matrices with Schur product and the usual addition is a commutative Banach algebra under the operator norm (the norm of the operator defined on Cn by the matrix). For a fixed matrix A, the norm of the operator B?A°B on this Banach algebra is called the Schur multiplier norm of A, and is denoted by ∥Am. It is proved here that ∥A∥=∥U1AU∥m for all unitary U (where ∥·∥ denotes the operator norm) iff A is a scalar multiple of a unitary matrix; and that ∥Am=∥A∥ iff there exist two permutations P, Q, a p×p (1?p?n) unitary U, an (n?p)×(n?p)1 contraction C, and a nonnegative number λ such that
A=λPU00CQ;
and this is so iff ∥A°A?∥=∥A∥2, where ā is the matrix obtained by taking entrywise conjugates of A.  相似文献   

20.
For any prime p, the sequence of Bell exponential numbers Bn is shown to have p ? 1 consecutive values congruent to zero (mod p), beginning with Bm, where m ≡ 1 ? (pp ? 1)(p ? 1)2 (mod(pp ? 1)(p ? 1)). This is an improvement over previous results on the maximal strings of zero residues of the Bell numbers. Similar results are obtained for the sequence of generalized Bell numbers An generated by e?(ex ? 1) = Σn = 0 Anxnn!.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号