首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Cheng YQ  Yao B  Zhang HD  Fang J  Fang Q 《Electrophoresis》2010,31(19):3184-3191
A high-speed DNA fragment separation system was developed based on a short capillary and a slotted-vial array automated sample introduction system. The injection process of DNA sample in a short capillary was investigated systematically with three injection techniques including constant-field-strength, low-field-strength and translational spontaneous injections. Under the optimized conditions, picoliter-scale sample plugs (corresponding to ca. 20-μm plug length) were obtained, which ensure the high-speed and high-efficiency separation for DNA fragments with a short effective separation length. Other separation conditions including the sieving matrix concentration, separation field strength and effective separation length were also optimized. The present system was applied in the separation of ΦX174-Hae III digest DNA marker. With an effective separation length of 2.5 cm, the separation could be achieved in <100 s with plate heights ranging from 0.21 to 0.74 μm (corresponding to plate numbers from 4.86 × 10(6) to 1.36 × 10(6)/m). The repeatabilities for the migration time of the eleven fragments were between 0.4 and 1.1% RSD (n=8). By using the automated continuous injection method, the separation for four different DNA samples could be achieved within 250 s. The present system was further applied in the fast sizing of real DNA samples of PCR products.  相似文献   

2.
Hsieh MM  Chang PL  Chang HT 《Electrophoresis》2002,23(15):2388-2393
A partially filling technique for the analysis of DNA markers and polymerase chain reaction (PCR) products by capillary electrophoresis in the presence of electroosmotic flow using polymer solutions is presented. Either after or prior to the sample injection, a plug of salts at high pH was hydrodynamically injected. During the separation, poly(ethylene oxide) (PEO) solution entered the capillary. We have found that the position, length, and composition of the plugs affect the sensitivity, resolution, and speed on the analysis of PhiX-174/HaeIII DNA restriction fragments or a DNA mixture (pBR 322/HaeIII digest, pBR 328/BglI digest and pBR 328/HinfI digest) with different degrees. Through careful evaluation of the impact of anions and cations on the analysis of DNA, we have suggested that the optimal condition is applying a plug consisting of 32 mM NaCl and 0.01 M NaOH at 30 cm height for 60 s after sample injection. In the presence of such a plug, PEO adsorption reduces, and thus the separation is faster, as well as the sensitivity improves. Using this condition, the analysis of a DNA mixture (injected at 30 cm for 360 s) containing ten different PCR products amplified after 17 cycles was complete in 25 min. About a 2000-fold improvement in the sensitivity was achieved when compared to that by a conventional method (10 s injection) without applying a plug.  相似文献   

3.
The growing importance of analyzing the human genome to detect hereditary and infectious diseases associated with specific DNA sequences has motivated us to develop automated devices to integrate sample preparation, real-time PCR, and microchannel electrophoresis (MCE). In this report, we present results from an optimized compact system capable of processing a raw sample of blood, extracting the DNA, and performing a multiplexed PCR reaction. Finally, an innovative electrophoretic separation was performed on the post-PCR products using a unique MCE system. The sample preparation system extracted and lysed white blood cells (WBC) from whole blood, producing DNA of sufficient quantity and quality for a polymerase chain reaction (PCR). Separation of multiple amplicons was achieved in a microfabricated channel 30 microm x 100 microm in cross section and 85 mm in length filled with a replaceable methyl cellulose matrix operated under denaturing conditions at 50 degrees C. By incorporating fluorescent-labeled primers in the PCR, the amplicons were identified by a two-color (multiplexed) fluorescence detection system. Two base-pair resolution of single-stranded DNA (PCR products) was achieved. We believe that this integrated system provides a unique solution for DNA analysis.  相似文献   

4.
We have demonstrated on-line concentration and separation of DNA in the presence of electroosmotic flow (EOF) using poly(ethylene oxide) (PEO) solutions. After injecting large-volumes DNA samples, PEO solutions entered a capillary filled with 400 mM Tris-borate (TB) buffers by EOF and acted as sieving matrices. DNA fragments stacked between the sample zone and PEO solutions. Because sample matrixes affected PEO adsorption on the capillary wall, leading to changes in EOF, migration time, concentration, and resolving power varied with the injection length. When injecting phiX174 RF DNA-HaeIII digest prepared in 5 mM Tris-HCl buffer, pH 7.0, at 250 V/cm, peak height increased linearly as a function of injection volume up to 0.9 microl (injection time 150 s). The sensitivity improvement was 100-fold compare to that injected at 25 V/cm for 10 s (0.006 microl). When injecting 1.54 microl of GeneScan 1000 ROX, the sensitivity improvement was 265-fold. The sensitivity improvement was 40-fold when injecting 0.17 microl DNA sample containing pBR 322/HaeIII, pBR 328/BglI, and pBR 328/HinfI digests prepared in phosphate-buffered saline. This method allows the analysis of polymerase chain reaction (PCR) products amplified after 17 cycles when injecting 0.32 microl (at 30 cm height for 300 s). The total analysis time was shorter (91.6 min) than that (119.6 min) obtained from injecting PCR products after 32 cycles for 10 s.  相似文献   

5.
Poly(dimethylsiloxane) (PDMS) membrane valves were utilized for diaphragm pumping on a PDMS-glass hybrid microdevice in order to couple infrared-mediated DNA amplification with electrophoretic separation of the products in a single device. Specific amplification products created during non-contact, infrared (IR) mediated polymerase chain reaction (PCR) were injected via chip-based diaphragm pumping into an electrophoretic separation channel. Channel dimensions were designed for injection plug shaping via preferential flow paths, which aided in minimizing the plug widths. Unbiased injection of sample could be achieved in as little as 190 ms, decreasing the time required with electrokinetic injection by two orders of magnitude. Additionally, sample stacking was promoted using laminar or biased-laminar loading to co-inject either water or low ionic strength DNA marker solution along with the PCR-amplified sample. Complete baseline resolution (Res = 2.11) of the 80- and 102-bp fragments of pUC-18 DNA marker solution was achieved, with partially resolved 257- and 267-bp fragments (Res = 0.56), in a separation channel having an effective length of only 3.0 cm. This resolution was deemed adequate for many PCR amplicon separations, with the added advantage of short separation time-typically complete in <120 s. Decreasing the amount of glass surrounding the PCR chamber reduced the DNA amplification time, yielding a further enhancement in analysis speed, with heating and cooling rates as high as 13.4 and -6.4 degrees C s(-1), respectively. With the time requirements greatly reduced for each step, it was possible to seamlessly couple IR-mediated amplification, sample injection, and separation/detection of a 278-bp fragment from the invA gene of <1000 starting copies of Salmonella typhimurium DNA in approximately 12 min on a single device, representing the fastest PCR-ME integration achieved to date.  相似文献   

6.
Lin CC  Hsu BK  Chen SH 《Electrophoresis》2008,29(6):1228-1236
In this study, we demonstrated an integrated ITP-gel electrophoresis (GE) device on a plastic substrate, in which 50 nL of samples could be hydrodynamically or electrokinetically injected and enriched by ITP into narrow bands and then subsequently introduced into a homogeneous GE channel for separation and detection. This microchip design rendered a simple introduction scheme for creating sandwiched stacking buffer system and flexibilities in choosing separation and stacking buffers independently. We used gel sieving buffers which compositions were different from those for stacking buffers to separate DNA and protein molecules based on sizing mechanism. Compared to conventional microchip GE, the sensitivity of microchip ITP-GE was estimated to increase by one to two orders of magnitude based on the dilution factor of the injected sample and the S/N ratio detected from the electropherogram. Moreover, it is interesting to note that ITP stacking leads to a preferential enhancement for analytes with lower concentrations compared to those with higher concentrations. Therefore, a reduction in the detection dynamic range for ITP-GE was gained. We demonstrated that ITP-GE could lead to 2-4-folds of reduction in the signal dynamic range for two PCR products in a mixture. Such advantage is demonstrated to be useful for the detection of two products amplified from a multiplex PCR in which one product is poorly amplified compared to the other.  相似文献   

7.
We are presenting the application of CE technique with dual‐channel LIF detection for the simultaneous separation of DNA fragments labeled with two different fluorescence dyes. The optimal conditions of the analysis were determined for the separation of amplified fragment length polymorphism (AFLP) fragments labeled with 5′‐6‐carboxyfluorescein (6‐FAM) and the DNA size standard labeled with sulfoindocyanine succinimidyl ester (Cy‐5). CE equipped with both argon ion and diode lasers is a good alternative for sequencers and might be applied in analyses of PCR products generated by various fingerprinting methods.  相似文献   

8.
无胶筛分毛细管电泳分析几百个碱基对核酸的条件优化   总被引:1,自引:0,他引:1  
丁晓萍  廖杰  刘晓达  王全立  马立人 《色谱》1998,16(6):485-488
通过正交设计实验综合分析了内充羟丙基甲基纤维素(HPMC)无胶筛分毛细管电泳中的分离场强、HPMC浓度、柱长度和柱内径对核酸分离的影响。结果表明,柱长度越长、柱内径越小、分离场强越小,分离效果越好。考虑实际情况,为能在短时间内使几百个碱基对的核酸得到有效分离,一般选择37cm×75μmi.d.的涂壁毛细管、柱内质量浓度为8g/L的HPMC、场强为324V/cm的条件,并在此种条件下分析了ApoB100基因的低浓度聚合酶链式反应(PCR)扩增产物(710bp)。  相似文献   

9.
CE has been applied for the first time to the simultaneous separation of soybean and rice proteins. Treated and untreated capillaries with different effective lengths as well as separation media at different pHs were tested. For that purpose, samples and standard solutions were prepared in 25:75 ACN-water media containing 0.3% v/v acetic acid. The use of an untreated capillary of 50 cm effective length together with an 80 mM borate buffer (pH 8.5) modified with 20% v/v ACN and UV detection at 254 nm were the conditions working the best. These conditions enabled the determination of soybean proteins in gluten-free dietary commercial products elaborated with soybean protein and/or soybean flour and rice flour using the standard additions calibration method. The method was linear up to 26 mg/mL of soybean proteins, the precision (expressed as RSD) was always better than 6%, and recoveries obtained for soybean proteins when spiking commercial products were very close to 100%.  相似文献   

10.
Suresh KK  Lee MJ  Park J  Kang SH 《Talanta》2008,75(1):49-55
This paper describes the applicability of microchip gel electrophoresis using a programmed field strength gradients (MGE-PFSG) method coupled with a polymerase chain reaction (PCR) for the ultra-fast diagnosis of canine T-cell lymphoma. The variable region in the T-cell receptor gamma (TCRgamma) gene from a T-cell lymphoma was used in PCR amplification. The contributions of the various parameters, including the effects of the molecular weight, concentration of the sieving matrix and field strength in MGE, were examined. 0.5% poly (ethyleneoxide) (PEO, M(r) 8000000) was used as the sieving matrix for the ultra-rapid separation of the amplified-PCR products (90 and 130-bp DNA fragments) from the PFSG at an effective length of 20mm in a glass microchip. The PCR products (90 and 130-bp DNA) of the T-cell lymphoma were analyzed within 41.7+/-0.1s, 15.5+/-0.2s and only 7.0+/-0.1s using a low-constant field strength, high-constant field strength and the PFSG, respectively. When 11 clinical samples were analyzed using the MGE-PFSG method, there was a 100% correlation with those obtained using conventional slab gel electrophoresis. The ultra-fast detection and rapid separation capabilities of MGE-PFSG make it an efficient tool for diagnosing T-cell lymphoma in clinical samples with high sensitivity.  相似文献   

11.
In this work, a CE method with bare gold nanorods (GNRs) based pseudostationary phase was developed and applied for the separation of chondroitin sulfate (CS) isomers, CS, and dermatan sulfate (DS). The separation efficiency was investigated by varying the experimental parameters such as concentration and pH of the BGE, separation voltage, internal diameter of capillary, different size, and morphology of gold nanomaterials. Results showed that different size and morphology of gold nanomaterials had different effects on the separation of CS and DS. The best separation of CS and DS was achieved in the BGE composed of aqueous 150 mmol/L (mM) ethylenediamine + 20 mM sodium dihydrogen phosphate + 30% v/v GNRs, pH 4.5, at the separation voltage of ?10 kV. Capillary was 59.2 cm in length (effective length 49 cm), 50 μm id capillary thermostated at 25°C. CE with bare GNRs used as pseudostationary phase was shown to be a suitable technique for the separation of CS and DS mixtures with wider peaks. RSD of migration time and peak area of CS and DS were 0.13, 0.14 and 0.86, 1.07%, respectively.  相似文献   

12.
Nucleic acid samples with high concentrations of salt could be stacked and well separated during capillary zone electrophoresis (CZE) by adding glycerol into the samples and using a Tris-Borate-EDTA (TBE) buffer (pH 8.3) as the separation medium. The so-called glycerol-salt mediated stacking was found applicable to different types of nucleic acids. Three nucleic acids: a 16s rRNA (1,542 nt), a double stranded DNA (1.6 k bp), and a single stranded DNA (30 nt), were tested as demos in the experiments. When the sample matrix contained 50 mM KCl and 50% (w/v) glycerol, the 16s rRNA sample could be stacked as high as 30 times compared with the sample without KCl. All the nucleic acids could be stacked effectively when high concentrations of glycerol (>50%) and salt (more than 50 mM) were present in the sample matrix, while the dsDNA could be stacked with high concentrations of glycerol (>50%) alone. Cen Qi and Hongping Wei contributed equally to this work.  相似文献   

13.
Separation of single‐base substitution sequential DNA isomers remains one of the most challenging tasks in DNA separation by capillary electrophoresis. We developed a simple, versatile capillary electrophoresis technique for the separation of single‐base sequential isomers of DNA having the same chain length. This technique is based on charge differences resulting from the different protonation (acid dissociation) properties of the four DNA bases. A mixture of 13 single‐base sequential isomers of 12‐mer single‐stranded DNA was separated by using an electrophoretic buffer solution containing 20 mM phosphoric acid (pH 2.0) and 8 M urea. We demonstrated that our method could separate all possible mutation patterns under identical experimental conditions. In addition, application of our method to the separation of the polymerase chain reaction product of a 68‐mer gene fragment and its single‐base isomers indicates that in combination with the appropriate genomic DNA extraction techniques, the method can detect single‐base gene mutations.  相似文献   

14.
We are currently developing miniaturized, chip-based electrophoresis devices fabricated in plastics for the high-speed separation of oligonucleotides. One of the principal advantages associated with these devices is their small sample requirements, typically in the nanoliter to sub-nanoliter range. Unfortunately, most standard sample preparation protocols, especially for oligonucleotides, are done off-chip on a microliter-scale. Our work has focused on the development of capillary nanoreactors coupled to micro-separation platforms, such as micro-electrophoresis chips, for the preparation of sequencing ladders and also polymerase chain reactions (PCRs). These nanoreactors consist of fused-silica capillary tubes (10-20 cm x 20-50 microns I.D.) with fluid pumping accomplished using the electroosmotic flow generated by the tubes. These reactors were situated in fast thermal cyclers to perform cycle sequencing or PCR amplification of the DNAs. The reactors could be interfaced to either a micro-electrophoresis chips via capillary connectors micromachined in polymethylmethacrylate (PMMA) using deep X-ray etching (width 50 microns; depth 50 microns) or conventional capillary gel tubes using zero-dead volume glass unions. For our chips, they also contained an injector, separation channel (length 6 cm; width 30 microns; depth 50 microns) and a dual fiber optic, near-infrared fluorescence detector. The sequencing nanoreactor used surface immobilized templates attached to the wall via a biotin-streptavidin-biotin linkage. Sequencing tracks could be directly injected into gel-filled capillary tubes with minimal degradation in the efficiency of the separation process. The nanoreactor could also be configured to perform PCR reactions by filling the capillary tube with the PCR reagents and template. After thermal cycling, the PCR cocktail could be pooled from multiple reactors and loaded onto a slab gel or injected into a capillary tube or microchip device for fractionation.  相似文献   

15.
Oguri S  Hibino M  Mizunuma M 《Electrophoresis》2004,25(12):1810-1816
We report on the effect on performance of varying the length of the capillary during throughout in-capillary derivatization (TICD) capillary electrophoresis (CE). Performance was evaluated by on-line coupling with a sample and CE runbuffer loading device that was newly introduced for this study. The device was assembled with a low cost using two 5 mm inner diameter (ID) disposable polyethylene syringes. First, a sequence was manually formed consisting of a 200 microL run buffer solution plug, a 100 microL sample plug and another 200 microL run buffer solution plug. Each plug was separated from its neighbor by a 100 microL air plug. When each plug reached the injection point where both a platinum-wire anode and the end of the separation capillary tube were located, 340 V/cm separation voltage (electrophoresis voltage) and 34 V/cm injection voltage were applied to the capillary for 3 s. Then the analytes were derivatized during migration in 50 microm ID capillaries filled with 2 mM o-phthalaldehyde (OPA)/N-acetylcysteine (NAC) in a 20 mM phosphate-borate buffer (pH 10), followed by separating and detecting of OPA derivatives by absorbance of 340 nm. Derivatization, separation, and detection were performed systematically using capillaries which varied in length from 5 to 80 cm. In the case of TICD-CE of a mixture containing 1 mM aspartic acid (Asp) and 20 mM m-nitorophenol (MNP) as a test solution, it was determined that peak area and peak width ratios of Asp to MNP did not depend on capillary length. Enantiomeric separations of DL-alanine (Ala) and Asp were examined using a run buffer consisting of a 45 microM beta-cyclodextrin (CD)-2 mM OPA/NAC-20 mM phosphate-borate buffer (pH 10). Even though the resolution of these enantiomeric pairs decreased with decreasing capillary length, as expected, the peaks corresponding to both enantiomeric amino acids were identified even when a 5 cm capillary was used. An 8-component amino acid mixture was also tested with 5 cm and 10 cm capillaries.  相似文献   

16.
聚环氧乙烷无胶筛分毛细管电泳分离宽分子量范围DNA片段   总被引:1,自引:0,他引:1  
在无胶筛分毛细管电泳中,以聚环氧乙烷为筛分介质,用硅烷化处理的毛细管柱(31.2 cm×75 μm有效长度21.0 cm)分离DL5000 DNA Marker(DNA长度为100~5000 bp),研究筛分介质浓度、缓冲液pH、分离电压和溴化乙锭浓度对分离双链DNA片段的影响,优化出分离100~5000 bp DNA片段的最佳条件。毛细管电泳的最佳条件为PEO浓度0.5%、缓冲液pH值8.0、电压12 kV、溴化乙锭浓度3.0 μg/mL。此条件下,对山梨醇脱氢酶基因(SDH)和乙烯受体基因(ETR1)的聚合酶链式反应(PCR)扩增产物同时检测,分离、鉴定效果良好。  相似文献   

17.
In this paper, we describe the application of micro-reversed-phase high-performance liquid chromatography (mu-RP-HPLC) for the separation and/or purification of polymerase chain reaction (PCR) products with detection accomplished using a miniaturized conductivity detector. The conductivity detector used two Pt wires and a bipolar waveform applied to the electrode pair from which the conductivity of the bulk solution could be measured. In the mobile phase used for the mu-RP-HPLC separation of the PCR product, the mass detection limit for herring sperm DNA using conductivity was found to be 11 ng. Efficient separation of the PCR amplicon from the other reagents present in the PCR cocktail was achieved in less than 4 min with a capacity factor of 2.5 and separation efficiency of 9.1 x 10(3) plates. The separation was carried out using reversed-phase ion-pair chromatography with a triethylammonium acetate ion-pairing agent.  相似文献   

18.
The applicability of ion-pair reversed-phase high-performance liquid chromatography/electrospray ionization mass spectrometry (IP-RP-HPLC/ESI-MS) and direct infusion/ESI-MS to the characterization of nucleic acid mixtures was evaluated by the analysis of the reaction products obtained from solid-phase synthesis of a 39-mer oligonucleotide. IP-RP-HPLC/ESI-MS was performed using 200 microm i.d. capillary columns packed with octadecylated, micropellicular poly(styrene-divinylbenzene) particles and applying gradients of acetonitrile in 50 mM triethylammonium bicarbonate (TEAB). Three different solvent systems were utilized for direct infusion/ESI-MS with removal of metal cations by on-line cation exchange: (1) 10 mM triethylamine (TEA) in 50% aqueous acetonitrile, (2) 2.2 mM TEA, 400 mM hexafluoro-2-propanol (HFIP) in 20% aqueous methanol and (3) 50 mM TEAB in 10% aqueous acetonitrile. Owing to its separation capability, the highest selectivity and specificity were achieved with IP-RP-HPLC/ESI-MS, which, apart form the 39-mer target sequence, allowed the identification of two isobutyryl-protected target sequences and a 10-mer and 20-mer failure sequence. Direct infusion/ESI-MS with TEA-acetonitrile or TEA-HFIP-methanol as solvent revealed signals for the 39-mer in the m/z range 700-1600. The presence of derivatives containing one, two, three and four isobutyryl groups indicated that the hydrolysis of the protecting groups after solid-phase synthesis was not complete. Failure sequences could not be identified by direct infusion/ESI-MS under conditions favoring multiple charging of the analytes owing to the high chemical background and coincidental overlapping of m/z signals. However, efficient charge state reduction upon addition of carbonic acid to the electrosprayed solvent shifted the signals of the 39-mer and derivatives to m/z values >2400 and allowed the detection of seven different failure sequences, ranging from the 8-mer to the 23-mer, in the mixture.  相似文献   

19.
Capillary electrophoresis (CE) was applied to analyse the long-chain fatty acid composition of vegetable oils, and their degradation products formed upon ageing when drying oils are used as binding media. The analytes were detected with contactless conductivity detection (CCD) and indirect UV absorption, both detectors positioned on-line at the separation capillary. The long-chain fatty acids were resolved in a background electrolyte (BGE) consisting of phosphate buffer (pH = 6.86, 15 mM) containing 4 mM sodium dodecylbenzensulfonate, 10 mM Brij 35, 2% (v/v) 1-octanol and 45% (v/v) acetonitrile. As in this system dicarboxylic analytes, the products of oxidative degradation of unsaturated fatty acids, cannot be determined, a suitable background electrolyte was developed by the aid of computer simulation program PeakMaster. It makes use of a 10 mM salicylic acid, 20 mM histidine buffer, pH 5.85, which combines buffering ability with the optical properties obligatory for indirect UV detection. This buffer avoids system eigenpeaks, which are often impairing the separation efficiency of the system. Separation of the dicarboxylic analytes was further improved by a counter-directed electroosmotic flow (EOF), obtained by dynamically coating the capillary wall with 0.2 mM cetyltrimethylammonium bromide. Long-chain fatty acids and their decomposition products could be determined in recent and aged samples of drying oils, respectively, and in samples taken from two paintings of the 19th century.  相似文献   

20.
Aptamers are DNA oligonucleotides capable of binding different classes of targets with high affinity and selectivity. They are particularly attractive as affinity probes in multiplexed quantitative analysis of proteins. Aptamers are typically selected from large libraries of random DNA sequences in a general approach termed systematic evolution of ligands by exponential enrichment (SELEX). SELEX involves repetitive rounds of two processes: (i) partitioning of aptamers from non-aptamers by an affinity method and (ii) amplification of aptamers by the polymerase chain reaction (PCR). New partitioning methods, which are characterized by exceptionally high efficiency of partitioning, have been recently introduced. For the overall SELEX procedure to be efficient, the high efficiency of new partitioning methods has to be matched by high efficiency of PCR. Here we present the first detailed study of PCR amplification of random DNA libraries used in aptamer selection. With capillary electrophoresis as an analytical tool, we found fundamental differences between PCR amplification of homogeneous DNA templates and that of large libraries of random DNA sequences. Product formation for a homogeneous DNA template proceeds until primers are exhausted. For a random DNA library as a template, product accumulation stops when PCR primers are still in excess of the products. The products then rapidly convert to by-products and virtually disappear after only 5 additional cycles of PCR. The yield of the products decreases with the increasing length of DNA molecules in the library. We also proved that the initial number of DNA molecules in PCR mixture has no effect on the by-products formation. While the increase of the Taq DNA polymerase concentration in PCR mixture selectively increases the yield of PCR products. Our findings suggest that standard procedures of PCR amplification of homogeneous DNA samples cannot be transferred to PCR amplification of random DNA libraries: to ensure efficient SELEX, PCR has to be optimized for the amplification of random DNA libraries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号