首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solid state NMR spectroscopy is inherently sensitive to chemical structure and composition and thus makes an ideal method to probe the heterogeneity of multicomponent polymers. Specifically, NMR spin diffusion experiments can be used to extract reliable information about spatial domain sizes on multiple length scales, provided that magnetization selection of one domain can be achieved. In this paper, we demonstrate the preferential filtering of protons in fluorinated domains during NMR spin diffusion experiments using 1H‐19F heteronuclear dipolar dephasing based on rotational echo double resonance (REDOR) MAS NMR techniques. Three pulse sequence variations are demonstrated based on the different nuclei detected: direct 1H detection, plus both 1H?13C cross polarization and 1H?19F cross polarization detection schemes. This 1H‐19F REDOR‐filtered spin diffusion method was used to measure fluorinated domain sizes for a complex polymer blend. The efficacy of the REDOR‐based spin filter does not rely on spin relaxation behavior or chemical shift differences and thus is applicable for performing NMR spin diffusion experiments in samples where traditional magnetization filters may prove unsuccessful. This REDOR‐filtered NMR spin diffusion method can also be extended to other samples where a heteronuclear spin pair exists that is unique to the domain of interest.  相似文献   

2.
Long‐range heteronuclear single quantum correlation (LR‐HSQC) experiments may be applied for detecting long‐range correlations but suffer from two disadvantages, common to all heteronuclear long‐range correlation experiments: (i) The information density in LR‐HSQC spectra may be too high to be used directly without “filtering out” shorter range correlations, and (ii) often, substantial differences in intensity among cross peaks exist, potentially hampering the visualization of weak, often crucial cross peaks. In this contribution, we propose a modified LR‐HSQC experiment, the LR‐HTQC experiment (Long‐Range Heteronuclear Triple Quantum Correlation) that partially solves the problems aforementioned. We show theoretically and experimentally that the LR‐HTQC experiment removes the intense cross peaks of CH spin pairs, substantially reduces the medium intensity of cross peaks originating from CHH' spin systems, whereas the typically weak intensity of cross peaks of CHH'H″ and C(H)n, n > 3 spin systems is less affected. Consequently, the LR‐HTQC experiment affords simplified long‐range heteronuclear shift correlation spectra and scales down large intensity differences among different types of cross peaks, although a certain general reduction of signal intensities has to be accepted.  相似文献   

3.
《Chemphyschem》2004,5(1):76-84
Frequency‐switched single‐transition cross‐polarization (FS‐ST‐CP) provides a versatile tool for selective coherence transfer in heteronuclear NMR of biomolecules such as proteins and nucleic acids. This type of coherence transfer is spin‐state‐selective and can therefore benefit from the extension of the life‐times of selected coherences due to partial cancellation of interfering relaxation mechanisms. The limits of the selectivity of the transfer are discussed by theory and illustrated by experiment. The methods are particularly efficient to obtain quantitative structural and dynamic information for selected residues in medium‐sized nitrogen‐15 or carbon‐13 labeled macromolecules.  相似文献   

4.
Diffusion ordered spectroscopy (DOSY) is used to determine the translational diffusion coefficients of molecules in solution. However, DOSY is highly susceptible to spurious spectral peaks resulting from thermal convection occurring in the NMR tube. Thermal convection therefore must be suppressed for accurate estimation of translational diffusion coefficients. In this study, we developed a new method to effectively suppress thermal convection using glass capillaries. A total of 6 to 18 capillaries (0.8‐mm outer diameter) were inserted into a regular 5‐mm NMR tube. The capillaries had minimal effect on magnetic field homogeneity and enabled us to obtain clean DOSY spectra of a mixture of small organic compounds. Moreover, the capillaries did not affect chemical shifts or signal intensities in two‐dimensional heteronuclear single quantum coherence spectra. Capillaries are a simple and inexpensive means of suppressing thermal convection and thus can be used in a wide variety of DOSY experiments. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Samples prepared following dissolution dynamic nuclear polarization (DNP) enable the detection of NMR spectra from low‐γ nuclei with outstanding sensitivity, yet have limited use for the enhancement of abundant species like 1H nuclei. Small‐ and intermediate‐sized molecules, however, show strong heteronuclear cross‐relaxation effects: spontaneous processes with an inherent isotopic selectivity, whereby only the 13C‐bonded protons receive a polarization enhancement. These effects are here combined with a recently developed method that delivers homonuclear‐decoupled 1H spectra in natural abundance samples based on heteronuclear couplings to these same, 13C‐bonded nuclei. This results in the HyperBIRD methodology; a single‐shot combination of these two effects that can simultaneously simplify and resolve complex, congested 1H NMR spectra with many overlapping spin multiplets, while achieving 50–100 times sensitivity enhancements over conventional thermal counterparts.  相似文献   

6.
Three different J‐editing methods (IPAP, E.COSY and J‐resolved) are implemented in a single NMR experiment to provide spin‐state‐edited 2D cross‐peaks from which a simultaneous measurement of different homonuclear and heteronuclear coupling constants can be performed. A new J‐selHSQMBC‐IPAP experiment is proposed for the independent measurement of two different nJ(CH) coupling constants along the F2 and F1 dimensions of the same 2D cross‐peak. In addition, the E.COSY pattern provides additional information about the magnitude and relative sign between J(HH) and nJ(CH) coupling constants. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Diffusion‐ordered NMR spectroscopy resolves mixture components on the basis of differences in their respective diffusion coefficients or molecular sizes. However, when components have near‐identical diffusion coefficients, they are not resolved in the diffusion dimension of a diffusion‐ordered spectroscopy (DOSY) spectrum. Adding surfactant micelles to these mixtures has been shown to enhance resolution when the component molecules interact differentially with the micelles. This approach is similar to that used in electrokinetic chromatography (EKC) where modifiers like micelles or polymers are used to enhance the separation of mixture components. In this study, perdeuterated surfactants are added to analyte mixtures studied with the DOSY technique. Since no micelle resonances appear in the mixture spectra, the difficulty associated with performing biexponential analyses in spectral regions where analyte and surfactant resonances overlap is avoided. The approach is demonstrated using mixtures of peptides with near‐identical diffusion coefficients. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Nuclear magnetic resonance spectrum of a mixture contains the overall peaks of all the analytes. It is impossible to perform structural assignment on the mixture without the knowledge of individual spectra of the components. Spectral separation is thus an important means of teasing out pure components of a mixture before spectral assignment. We propose a strategy called diffusion‐ordered independent component analysis (DIFFICA) to achieve this task. This strategy applies independent component analysis algorithms to diffusion‐ordered spectroscopy (DOSY) to extract spectra of pure components in a mixture. DIFFICA was tested in a simulation and experimentally in two three‐component systems with and without water suppression, in 1D and 2D DOSY data. Pure spectra were achieved in both cases. The selection of diffusion parameters to guarantee pure spectra is guided by the distance correlation between separated spectra. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
In this work we analyse the non‐negligible heating effect that can be produced by the radiofrequency during the contact time in Hartmann–Hahn cross polarization experiments in liquid crystals. We perform the analysis in the nematic phase of 4‐n‐octyl‐4′‐cyanobiphenyl (8CB). The heating effect is quantified through the chemical shifts of the carbon resonances, which move towards their respective positions in the isotropic phase when increasing the contact time. The calibration procedure involves an independent measurement of chemical shift dependence on externally controlled bath temperature. This variation was performed in the range between 300 and 313 K covering the smectic A and nematic mesophases. An overall heating rate of 0.16 K ms?1 is observed during the contact time in a cross polarization experiment performed at ω1/2π ? 80 kHz. This rate goes to approximately one‐half for ω1/2π ? 60 kHz and becomes unobservable for ω1/2π < 50 kHz under typical experimental conditions. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
Isomeric mixtures from synthetic or natural origins can pose fundamental challenges for their chromatographic separation and spectroscopic identification. A novel 1D selective NMR experiment, chemical shift selective filter (CSSF)‐TOCSY‐INEPT, is presented that allows the extraction of 13C NMR subspectra of discrete isomers in complex mixtures without physical separation. This is achieved via CSS excitation of proton signals in the 1H NMR mixture spectrum, propagation of the selectivity by polarization transfer within coupled 1H spins, and subsequent relaying of the magnetization from 1H to 13C by direct INEPT transfer to generate 13C NMR subspectra. Simple consolidation of the subspectra yields 13C NMR spectra for individual isomers. Alternatively, CSSF‐INEPT with heteronuclear long‐range transfer can correlate the isolated networks of coupled spins and therefore facilitate the reconstruction of the 13C NMR spectra for isomers containing multiple spin systems. A proof‐of‐principle validation of the CSSF‐TOCSY‐INEPT experiment is demonstrated on three mixtures with different spectral and structural complexities. The results show that CSSF‐TOCSY‐INEPT is a versatile, powerful tool for deconvoluting isomeric mixtures within the NMR tube with unprecedented resolution and offers unique, unambiguous spectral information for structure elucidation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Y Sera  N Matsubara  K Otsuka  S Terabe 《Electrophoresis》2001,22(16):3509-3513
On-line sample concentration by sweeping was investigated in microchip micellar electrokinetic chromatography (MEKC), By changing the distance between the injection cross and the detection points, the profile of the concentration process and the diffusion process in sweeping was elucidated. Rhodamine B injected for 4 s was best concentrated by sweeping at 9.4 mm from the injection cross and the enhancement factor was 450. At the longer distance from this point the peak of Rhodamine B was broadened and diluted by diffusion. The diffusion constant of Rhodamine B calculated from the experiment was 5.7 x 10(-6) cm2s(-1). The mixture of rhodamine B, sulforhodamine B, and cresyl fast violet was concentrated by sweeping and separated by MEKC at the same time.  相似文献   

12.
Diffusion‐ordered spectroscopy (DOSY) is an important technique for separating the NMR signals of the components in a mixture, and relies on differences in diffusion coefficient. Standard DOSY experiments therefore struggle when the components of a mixture are of similar size, and hence diffuse at similar rates. Fortunately, the diffusion coefficients of solutes can be manipulated by changing the matrix in which they diffuse, using matrix components that interact differentially with them, a technique known as matrix‐assisted DOSY. In the present investigation, we evaluate the performance of a number of new, previously used, and mixed matrices with an informative test mixture: the three positional isomers of dihydroxybenzene. The aim of this work is to present the matrix‐assisted DOSY user with information about the potential utility of a set of matrices (and combinations of matrices), including ionic and non‐ionic surfactants, complexing agents, polymers, and mixed solvents. A variety of matrices improved the diffusion resolution of the signals of the test system, with the best separation achieved by mixed micelles of sodium dodecyl sulfate and cetyl trimethylammonium bromide. The use of mixed matrices offers great potential for the analyst to tailor the matrix to a particular sample under study. © 2016 The Authors Magnetic Resonance in Chemistry Published by John Wiley & Sons, Ltd.  相似文献   

13.
A novel optimization method is described for the acquisition of direct one‐bond heteronuclear correlations. The RDSQC (Randomly optimized Direct correlation Single Quantum Coherence) experiment utilizes an optimization based on the randomly ordered sampling of a range of couplings. The random order of the l/(2*(1JCHmin)) delays removes the signal dependency on a single type of apodization, thus eliminating a significant portion of the F1 artifacts induced in the accordion‐optimized ADSQC experiment. Compared to the statically optimized GHSQC, the randomly optimized data maintains the desired signal intensity in most cases, with a small loss for the weakly coupled proton‐carbon pairs and significant gains for the more strongly coupled pairs. Compared to the accordion‐optimized ADSQC data, the randomly optimized data afforded similar signal‐to‐noise without the F1 modulated artifacts simplifying spectral interpretation.  相似文献   

14.
The component spectra of a mixture of isomers with nearly identical diffusion coefficients cannot normally be distinguished in a standard diffusion‐ordered spectroscopy (DOSY) experiment but can often be easily resolved using matrix‐assisted DOSY, in which diffusion behaviour is manipulated by the addition of a co‐solute such as a surfactant. Relatively little is currently known about the conditions required for such a separation, for example, how the choice between normal and reverse micelles affects separation or how the isomer structures themselves affect the resolution. The aim of this study was to explore the application of sodium dodecyl sulfate (SDS) normal micelles in aqueous solution and sodium 1,4‐bis(2‐ethylhexyl)sulfosuccinate (AOT) aggregates in chloroform, at a range of concentrations, to the diffusion resolution of some simple model sets of isomers such as monomethoxyphenols and short chain alcohols. It is shown that SDS micelles offer better resolution where these isomers differ in the position of a hydroxyl group, whereas AOT aggregates are more effective for isomers differing in the position of a methyl group. For both the normal SDS micelles and the less well‐defined AOT aggregates, differences in the resolution of the isomers can in part be rationalised in terms of differing degrees of hydrophobicity, amphiphilicity and steric effects. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Complex nuclear magnetic resonance (NMR) signals of organic compounds containing multiple analogous substructures or mixtures pose a significant challenge to structural identification, thus resulting in frequent misassignment of structures. The GEMSTONE method, a single-scan technique that selectively excites a specific proton signal among the crowded NMR signals, was recently proposed as a solution. However, its extension to the polarization transfer method for heteronuclear spin systems was unsuccessful. Herein, we present an extension method that addresses the altered heteronuclear polarization transfer efficiency and enables the acquisition of ultraselective 13C and 1H-13C correlation NMR subspectra with hertz-level signal selectivity in both dimensions. We demonstrate the effectiveness of this technique in the structural analysis of a chromopeptide pharmaceutical and a diastereomeric mixture of a fungicide.  相似文献   

16.
We have recently demonstrated that polarization transfer using an adiabatic passage through the Hartmann-Hahn condition (APHH-CP) by a variation of the radio-frequency amplitude can substantially improve the transfer efficiency over Hartmann-Hahn cross polarization. Here we show that APHH-CP can be combined with fast magic angle sample spinning (MAS). The heteronuclear dipolar order, established in the course of the transfer, can indeed be created and preserved.  相似文献   

17.
The transformation from a disordered into an ordered version of the zeolite natrolite occurs on prolonged heating of this material in the crystallizing medium, but not if the mother liquor is replaced by water or an alkaline solution. This process occurs for both aluminosilicate and gallosilicate analogues of natrolite. In cross experiments, the disordered Al‐containing (or Ga‐containing) analogue is heated while in contact with the mother liquor of the opposite analogue, that is, the Ga‐containing (or Al‐containing) liquor. Therefore, strong evidence for the mechanism of the ordering process was obtained, which was thus proposed to proceed by intraframework migration of tetrahedral atoms without diffusion along the pores. Migration is first triggered, then fuelled by surface rearrangement through reactions with the mother liquor, and stops when an almost fully ordered state is attained. Classical dissolution–recrystallization and Ostwald ripening processes do not appear to be relevant for this phase transformation.  相似文献   

18.
The presence of a highly abundant passive nucleus (Z = 19 F or 31P) allows the simultaneous determination of the magnitude and the sign of up to three different heteronuclear coupling constants from each individual cross‐peak observed in a 2D 1H‐X selHSQMBC spectrum. Whereas J(HZ) and J(XZ) coupling constants are measured from E.COSY multiplet patterns, J(XH) is independently extracted from the complementary IPAP pattern generated along the detected F2 dimension. The incorporation of an extended TOCSY transfer allows the extraction of a complete set of all these heteronuclear coupling constants and their signs for an entire 1H subspin system. 1H‐X/1H‐Y time‐shared versions are also proposed for the simultaneous measurement of five different couplings (J(XH), J(YH), J(XZ), J(YZ), and J(ZH)) for multiple signals in a single NMR experiment. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
The reaction mechanism for the biomimetic synthesis of tryptophan from indole and serine in the presence of Ac2O in AcOH was investigated. Although the time‐course 1H‐NMR spectra of the reaction of 5‐methoxyindole with N‐acetylserine were measured in the presence of (CD3CO)2O in CD3CO2D, the reactive intermediate could not be detected. This reaction was conducted without 5‐methoxyindole in order to elucidate the reactive intermediate, but the intermediate could not be isolated from the reaction mixture. Since the intermediate would be expected to have a very short life time, and therefore be very difficult to detect by conventional analytical methods, the structure of the intermediate was elucidated using a 2D‐NMR technique, diffusion‐ordered spectroscopy (DOSY). Two intermediates were detected and confirmed to be 2‐methyl‐4‐methyleneoxazol‐5(4H)‐one and 2‐methyl‐4‐hydroxymethyloxazol‐5(4H)‐one. The present results demonstrated that DOSY is a powerful tool for the detection of unstable intermediates. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Diffusion‐ordered spectroscopy (DOSY) is a powerful technique for mixture analysis, but in its basic form it cannot separate the component spectra for species with very similar diffusion coefficients. It has been recently demonstrated that the component spectra of a mixture of isomers with nearly identical diffusion coefficients (the three dihydroxybenzenes) can be resolved using matrix‐assisted DOSY (MAD), in which diffusion is perturbed by the addition of a co‐solute such as a surfactant [R. Evans, S. Haiber, M. Nilsson, G. A. Morris, Anal. Chem. 2009, 81, 4548–4550]. However, little is known about the conditions required for such a separation, for example, the concentrations and concentration ratios of surfactant and solutes. The aim of this study was to explore the concentration range over which matrix‐assisted DOSY using the surfactant SDS can achieve diffusion resolution of a simple model set of isomers, the monomethoxyphenols. The results show that the separation is remarkably robust with respect to both the concentrations and the concentration ratios of surfactant and solutes, supporting the idea that MAD may become a valuable tool for mixture analysis. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号