首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Trioxalatocobaltates of bivalent metals KM2+[Co(C2O4)3x H2O, with M2+ = Ba, Sr, Ca and Pb, have been prepared, characterized and their thermal behaviour studied. The compounds decompose to yield potassium carbonate, bivalent metal carbonate or oxide and cobalt oxide as final products. The formation of the final products of decomposition is influenced by the surrounding atmosphere. Bivalent metal cobaltites of the types KM2+CoO3 and M2+CoO3—x are not identified among the final products of decomposition. The study brings out the importance of the decomposition mode of the precursor in producing the desired end products.  相似文献   

2.
A comparative study on the oxidation and charge compensation in the AxCoO2−δ systems, A=Na (x=0.75, 0.47, 0.36, 0.12) and Li (x=1, 0.49, 0.05), using X-ray absorption spectroscopy at O 1s and Co 2p edges is reported. Both the O 1s and Co 2p XANES results show that upon removal of alkali metal from AxCoO2−δ the valence of cobalt increases more in LixCoO2−δ than in NaxCoO2−δ. In addition, the data of O 1s XANES indicate that charge compensation by oxygen is more pronounced in NaxCoO2−δ than in LixCoO2−δ.  相似文献   

3.
Calcium-for-strontium substituted samples of the misfit-layered cobalt-oxide system, [(Sr1−xCax)2(O,OH)2]q[CoO2], were successfully synthesized up to x=0.2 with a sample-encapsulation technique originally developed for the x=0 end phase. While the x=0 sample has a commensurate match between the two layer blocks (i.e. q=0.5), isovalent Ca-for-Sr substitution induces lattice misfit (i.e. q>0.5). At the same time the Seebeck coefficient gets increased, but the increase in resistivity results in suppressing the thermoelectric power factor. The magnetic anomaly in the x=0 sample gets released upon the Ca substitution for the x=0.2 sample to exhibit an almost Curie-Weiss behavior. It is concluded that with increasing x in [(Sr1−xCax)2(O,OH)2]q[CoO2] the properties smoothly evolve towards those previously reported for the x=1.0 end member, [Ca1.7O2.1H2.4]0.58[CoO2].  相似文献   

4.
Solid-state synthesis of Na0.71Co1−xRuxO2 compositions shows that ruthenium can be substituted for cobalt in the hexagonal Na0.71CoO2 phase up to x=0.5. The cell expands continuously with increasing ruthenium content. All mixed Co-Ru phases show a Curie-Weiss behaviour with no evidence of magnetic ordering down to 2 K. Unlike the parent phase Na0.71CoO2, ruthenium-substituted phases are all semiconducting. They exhibit high thermoelectric power, with a maximum of 165 μV/K at 300 K for x=0.3. The Curie constant C and Seebeck coefficient S show a non-monotonic evolution as a function of ruthenium content, demonstrating a remarkable interplay between magnetic properties and thermoelectricity. The presence of ruthenium has a detrimental effect on water intercalation and superconductivity in this system. Applying to Ru-substituted phases the oxidative intercalation of water known to lead to superconductivity in the NaxCoO2 system yields a 2-water layer hydrate only for x=0.1, and this phase is not superconducting down to 2 K.  相似文献   

5.
The crystal structure of our newly discovered Sr-Co-O phase is investigated in detail through high-resolution electron microscopy (HREM) techniques. Electron diffraction (ED) measurement together with energy dispersive X-ray spectroscopy (EDS) analysis show that an ampoule-synthesized sample contains an unknown Sr-Co-O ternary phase with monoclinic symmetry and the cation ratio of Sr/Co=1. From HREM images a layered structure with a regular stacking of a CdI2-type CoO2 sheet and a rock-salt-type Sr2O2 double-layered block is observed, which confirms that the phase is the parent of the more complex “misfit-layered (ML)” cobalt oxides of [MmA2Om+2]qCoO2 with the formula of [Sr2O2]qCoO2, i.e. m=0. It is revealed that the misfit parameter q is 0.5, i.e. the two sublattices of the CoO2 sheet and the Sr2O2 block coexist to form a commensurate composite structure. We propose a structural model with monoclinic P21/m symmetry, which is supported by simulations of ED patterns and HREM images based on dynamical diffraction theory.  相似文献   

6.
Thermoelectric properties of polycrystalline La1−xSrxCoO3, where Sr2+ is substituted in La3+ site in perovskite-type LaCoO3, have been investigated. Sr-doping increases the electrical conductivity (σ) of La1−xSrxCoO3, and also decreases the Seebeck coefficient (S) for 0.01?x?0.40. A Hall coefficient measurement reveals that the increase in electrical conductivity arises from increases in both carrier concentration and the Hall mobility. The decrease in the Seebeck coefficient is caused by a decrease in carrier effective mass as well as increase in carrier concentration. The highest power factor (σS2) is 3.7×10−4 W m−1 K−2 at 250 K for x=0.10. The thermal conductivity (κ) is about 2 W m−1 K−1 at 300 K for 0?x?0.04, and increases for x?0.05 because of an increase in heat transport by conductive carrier. The thermoelectric properties of La1−xSrxCoO3 are improved by Sr-doping, and the figure of merit (Z=σS2 κ−1) reaches 1.6×10−4 K−1 for x=0.06 at 300 K (ZT=0.048). For heavily Sr-doped samples, the thermoelectric properties diminish mainly because of the decrease in the Seebeck coefficient and the increase in thermal conductivity.  相似文献   

7.
The chemical stability of the layered Li1−xCoO2 and Li1−xNi0.85CoO.15O2 cathodes is compared by monitoring the oxygen content with lithium content (1−x) in chemically delithiated samples. The Li1−xCoO2 system tends to lose oxygen from the lattice at deep lithium extraction while the Li1−xNi0.85Co0.15O2 system does not lose oxygen at least for (1−x)>0.3. This difference seems to result in a lower reversible (practical) capacity (140 mA h/g) for LiCoO2 compared to that for LiNi0.85Co0.15O2 (180 Ma h/g). The loss of significant amount of oxygen leads to a sliding of oxide layers and the formation of a major P3 and a minor O1 phase for the end member CoO2−δ with δ=0.33. In contrast, Ni0.85Co0.15O2−δ with a small amount of δ=0.1 maintains the initial O3 layer structure.  相似文献   

8.
The magnetic, thermoelectric, and structural properties of LixNayCoO2, prepared by intercalation and deintercalation chemistry from the thermodynamically stable phase Li0.41Na0.31CoO2, which has an alternating Li/Na sequence along the c-axis, are reported. For the high Li-Na content phases Li0.41Na0.31CoO2 and Li0.40Na0.43CoO2, a sudden increase in susceptibility is seen below 50 K, whereas for Li0.21Na0.14CoO2 an antiferromagnetic-like transition is seen at 10 K, in spite of a change from dominantly antiferromagnetic to dominantly ferromagnetic interactions with decreasing alkali content. The Curie constant decreases linearly with decreasing alkali content, at the same time the temperature-independent contribution to the susceptibility increases, indicating that as the Co becomes more oxidized the electronic states become more delocalized. Consistent with this observation, the low alkali containing phases have metallic-like resistivities. The 300 K thermopowers fall between 30 μV/K (x+y=0.31) and 150 μV/K (x+y=0.83).  相似文献   

9.
Solid solutions of lithium and potassium metazirconates Li2−xKxZrO3 (where, 0?x?2) were prepared by coprecipitation. Samples were characterized by powder X-ray diffraction, scanning electron microscopy, and thermogravimetric analyses. Results showed that the solubility limits of potassium into Li2ZrO3 is x=0.2. Furthermore, at higher potassium concentrations, a new phase was synthesized, Li2.27K1.19Zr2.16O6.05. For structural studies of this new phase, XRD data were analyzed by Rietveld refinements. Additionally, at high potassium concentrations different phases of ZrO2 were found, as potassium tends to sublimate. On the other hand, lithium-potassium metazirconate solid solutions, Li2−xKxZrO3, were tested as CO2 captors. Thermal analyses into a CO2 flux showed that Li2−xKxZr2O3 solid solutions present a better CO2 absorption than Li2ZrO3 pure. The differences observed in the CO2 sorption processes were explained with thermodynamic data.  相似文献   

10.
The layered cobaltate La0.30CoO2 was prepared from NaxCoO2 precursor by a solid-state ionic exchange and was characterized by means of X-ray and neutron diffraction, magnetic, thermal and electric transport measurements. The compound consists of hexagonal sheets of edge-sharing CoO6 octahedra interleaved by lanthanum monolayers. Compared to Na+ in the parent system, the La3+ ions occupy only one-third of available sites, forming a 2-dimensional superstructure. The deviation from the ideal stoichiometry La1/3CoO2 introduces extra hole carriers into the diamagnetic LS Co3+ matrix making the sample Pauli paramagnetic. The temperature dependence of the electrical conductivity in La0.30CoO2 follows Mott's T−1/3 law up to about 400 K, which is in contrast with the standard metallic behavior in the Na+ homolog possessing the same formal doping. The experiments are complemented by electronic structure calculations for La0.30CoO2 and related NaxCoO2 systems.  相似文献   

11.
We synthesized a new cobalt oxide (CaOH)1.14CoO2 by utilizing a high-pressure technique. X-ray and electron diffraction studies revealed that the compound has a layered structure that consists of CdI2-type CoO2 layers and rock-salt-type double CaOH atomic layers. The two subcells have incommensurate periodicity along the a-axis, resulting in a misfit-layered structure. From resistivity and Seebeck coefficient measurements, we have shown that the two-dimensional (2-D) variable-range hopping (VRH) regime with hole conduction is dominant at low temperature for this compound. As temperature increases, the conduction mechanism undergoes crossover from the 2-D VRH regime to a thermal activation-energy-type regime.  相似文献   

12.
This paper describes the structure and magnetic properties of a novel cobalt 1-aminoethylidenediphosphonate compound, namely Co3{CH3C(NH3)(PO3H)(PO3)}2{CH3C(NH3)(PO3H)2}2(H2O)4·2H2O (1). The structure contains a trimer unit of Co3{CH3C(NH3)(PO3H)(PO3)}2 in which two equivalent phosphonate ligands chelate and bridge the three cobalt ions. Each trimer unit is further linked to its four equivalent neighbors through corner-sharing of CoO6 octahedra and CPO3 tetrahedra, forming a two-dimensional layer in the bc-plane which contains 12-membered rings. These layers are connected to each other by extensive hydrogen bonds. Magnetic studies show that weak antiferromagnetic interactions are mediated between the cobalt ions. Crystal data for 1: monoclinic, space group C2/c, a=27.727(4), b=7.1091(11), , β=118.488(3), , Z=2.  相似文献   

13.
Epitaxial γ phase-NaxCoO2 thin films were deposited on (001) sapphire by the pulsed laser deposition method. To fabricate epitaxial Na0.5CoO2 thin films, we used a solution of iodine-dissolved acetonitrile and obtained an epitaxial Na0.5CoO2 thin film with a high crystallinity because of Na deintercalation of epitaxial Na0.7CoO2. From the spectroscopic ellipsometry analysis, we obtained the optical constants as well as the optical conductivities for the Na0.5CoO2 and Na0.7CoO2 thin films. The energy splitting between eg and a1g increased because of the structural strain of the Na0.7CoO2 thin film. It is inferred that the structural strain is the source for the lower resistivity and the preservation of the strongly correlated system up to 200 K for the Na0.7CoO2 thin film. On the other hand, the strain in the Na0.5CoO2 thin film was not affected, and the charge-ordering state and the Na content (x=0.5) only cause the charge-ordering state.  相似文献   

14.
K3InF6 is synthesized by a sol-gel route starting from indium and potassium acetates dissolved in isopropanol in the stoichiometry 1:3, with trifluoroacetic acid as fluorinating agent. The crystal structures of the organic precursors were solved by X-ray diffraction methods on single crystals. Three organic compounds were isolated and identified: K2InC10O10H6F9, K3InC12O14H4F18 and K3InC12O12F18. The first one, deficient in potassium in comparison with the initial stoichiometry, is unstable. In its crystal structure, acetate as well as trifluoroacetate anions are coordinated to the indium atom. The two other precursors are obtained, respectively, by quick and slow evaporation of the solution. They correspond to the final organic compounds, which give K3InF6 by decomposition at high temperature. The crystal structure of K3InC12O14H4F18 is characterized by complex anions [In(CF3COO)4(OHx)2](5−2x)− and isolated [CF3COOH2−x](x−1)− molecules with x=2 or 1, surrounded by K+ cations. The crystal structure of K3InC12O12F18 is only constituted by complex anions [In(CF3COO)6]3− and K+ cations. For all these compounds, potassium cations ensure only the electroneutrality of the structure. IR spectra of K2InC10O10H6F9 and K3InC12O12F18 were also performed at room temperature on pulverized crystals.  相似文献   

15.
A monoclinic phase of the misfit-layered cobalt oxide (Ca0.85OH)1.16CoO2 was successfully synthesized and characterized. It was found that this new material is a poly-type phase of the orthorhombic form of (CaOH)1.14CoO2, recently discovered by the present authors. Both the compounds consist of two interpenetrating subsystems: CdI2-type CoO2 layers and rock-salt-type double-atomic-layer CaOH blocks. However, these two phases exhibit a different stacking structure. By powder X-ray and electron diffraction (ED) studies, it was found that the two subsystems of (Ca0.85OH)1.16CoO2 have c-centered monoclinic Bravais lattices with common a=4.898 Å, c=8.810 Å and β=95.8° lattice parameters, and different b parameters: b1=2.820 Å and b2=4.870 Å. Chemical analyses revealed that the monoclinic phase has a cobalt valence of +3.1-3.2. Resistivity of the monoclinic phase is approximately 101-105 times lower than that of the orthorhombic phase. This suggests that the monoclinic phase is a hole-doped phase of the insulating orthorhombic phase. Furthermore, large positive Seebeck coefficients (∼100 μV/K) were observed near room temperature.  相似文献   

16.
The composition of 'potassium cobaltinitrite' precipitated under the usual conditions from a slightly acid solution containing a large excess of potassium nitrite, and finally dried at 110°, has been determined. When a relatively small quantity of cobalt is precipitated the dried precipitate consists of a mixture of anhydrous and hydrated K3Co(NO2)6. With large amounts of cobalt the precipitate also contains a salt of cobalt(II) (probably K2Co(NO2)4) due to incomplete oxidation of the cobalt(II). Because the formula weight of K2Co(NO2)4 is smaller than that of K3Co(NO2)6. whereas that of hydrated K3Co(NO2)6 is larger, the weight of the precipitate is actually not very different than if it were pure K3Co(NO2)6. Quantities of cobalt from 40 to 300 mg can be determined with an error within ±1 % by weighing the dried precipitate as presumed K3Co(NO2)6, and, if desired, the error can be decreased to a few tenths of a percent by employing an empirical factor. This simple method rivals in accuracy the more laborious electrogravimetric method.  相似文献   

17.
Structural changes in the layered compound γ-NaxCoO2 (x=0.74) are studied by in situ Raman scattering and energy-dispersive X-ray diffraction methods at pressures up to 41 GPa. The pressure dependence of the lattice parameters indicate that γ-NaxCoO2 has a strong anisotropic compressibility before 15 GPa and the unit cell is easily compressed between layers. The discontinuity of the lattice parameters and Raman observations reveal that a phase transition occurred at pressures between 10 and 12 GPa. The high-pressure phase has the same hexagonal symmetry and the phase transition may be due to the pressure-induced rearrangement of one of the Na cations in the unit cell.  相似文献   

18.
The two systems (a) and (b) for different values of x were synthesized. Their electron transport and magnetic properties show a change in behavior above a critical value of x. Unlike the system La1?xSrxCoO3, itinerant electron ferromagnetism is not observed. This is explained on the basis of the absence of an itinerant band of Co4+ whose generation is restricted on account of substitution of Ti4+. Electron transport in these two systems is compared with that of LaCoO3 or La1?xSrxCoO3 and is discussed in view of the presence of different valence states of cobalt and change in crystal field splitting. Spin-state equilibria in these two systems are similar to that in LaCoO3.  相似文献   

19.
Mixed crystals of Li[Kx(NH4)1−x]SO4 have been obtained by evaporation from aqueous solution at 313 K using different molar ratios of mixtures of LiKSO4 and LiNH4SO4. The crystals were characterized by Raman scattering and single-crystal and powder X-ray diffraction. Two types of compound were obtained: Li[Kx(NH4)1−x]SO4 with x?0.94 and Li2KNH4(SO4)2. Different phases of Li[Kx(NH4)1−x]SO4 were yielded according to the molar ratio used in the preparation. The first phase is isostructural to the room-temperature phase of LiKSO4. The second phase is the enantiomorph of the first, which is not observed in pure LiKSO4, and the last is a disordered phase, which was also observed in LiKSO4, and can be assumed as a mixture of domains of two preceding phases. In the second type of compound with formula Li2KNH4(SO4)2, the room-temperature phase is hexagonal, symmetry space group P63 with cell-volume nine times that of LiKSO4. In this phase, some cavities are occupied by K+ ions only, and others are occupied by either K+ or NH4+ at random. Thermal analyses of both types of compounds were performed by DSC, ATD, TG and powder X-ray diffraction. The phase transition temperatures for Li[Kx(NH4)1−x]SO4x?0.94 were affected by the random presence of the ammonium ion in this disordered system. The high-temperature phase of Li2KNH4(SO4)2 is also hexagonal, space group P63/mmc with the cell a-parameter double that of LiKSO4. The phase transition is at 471.9 K.  相似文献   

20.
Neutron structure determinations have been made of Tutton's salts, X2[M(H2O)6] (YO4)2, where Y = Se, X = K+, M = Cu2+; Y = S, X = K+, M = Ni2+, Cu2+, Zn2+; X = Rb+, Cs+, M = Cu2+. This work has shown that there are extensive hydrogen networks with almost linear hydrogen bonds from [M(H2O)6]2+ to (YO4)2?. The (H … O) distance increases in the Cu2+ series for X = K+ to Cs+ but there is no difference for the potassium copper salts when Y = Se or S. Three different distorted [M(H2O)6]2+ octahedra were found in the series (orthorhombic, tetragonal with two long and four short, or four long and two short bonds). The interatomic distances from X+ to the neighboring O in a distorted XO8+ dodecahedron increases with increased cation size, implying that the X+ polyhedron is maintaining its shape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号