首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaction of BaO, Nb2O5, and Nb in mole ratios of 2.4:1.6:1 in an evacuated silica capsule at 1250°C produces a mixture of at least two products, one of which has the probable composition Ba6+xNb14Si4O47 (x ? 0.23). This compound has an hexagonal unit cell of dimensions a = 9,034 ± 0.004 Å, c = 27.81 ± 0.02 Å, probable space group P63mcm, Z = 2. Its structure has been determined from 942 independent reflections collected by a counter technique and refined by least squares methods to a conventional R value of 0.062. The basic structure consists of strings of four NbO6 octahedra sharing opposite corners, each string joined to the next by edge sharing of the end octahedra, so that the c axis corresponds to the length of a strand of seven corner-linked octahedra. Chains of three such strands are formed by corner sharing between the strands. The chains in turn are joined by NbO6 octahedra and Si2O7 groups in which the SiOSi linkage is linear. Barium atoms are in sites between the chains coordinated by 13 oxygen atoms. A second site, 15 coordinated, probably has a small amount of barium as well; the fractional occupancy for barium in this site is 0.076.  相似文献   

2.
Li2WO4II, synthesized at 3 kbar and 630°C, has tetragonal symmetry, I41amd, a = 11.954(2) and c = 8.410(1)Å, Z = 16, Dcalc = 5.78 g cm?3. The structure was determined by countermeasuring 469 independent reflections from a single crystal and was refined up to R = 0.032 by the full-matrix least-squares method. It is based on cubic closest packing of oxygen atoms and is closely related to the β-phase structure of Mg2SiO4. W and Li(2) are in octahedral sites and Li(1), in tetrahedral sites. Four Li(1)O4 tetrahedra form a Li4O12 group, WO6 and Li(2)O6 construct a octahedral double chain along the a axis, and four WO6 octahedra build a W4O16 group by sharing their octahedral edges.  相似文献   

3.
The structure of a KxP2W4O16 (x ? 0.4) crystal was established by X-ray analysis. The solution in the cell of symmetry P21m, with a = 6.6702(5), b = 5.3228(8), c = 8.9091(8) Å, β = 100.546(7)°, Z = 1, has led to R = 0.033 and Rw = 0.036 for 2155 reflections with σ(I)I ≤ 0.333. This structure can be described as two octahedra-wide ReO3-type slabs connected through “planes” of PO4 tetrahedra. A new structural family KxP2W2nO6n+4 can be foreseen which is closely related to the orthorhombic P4W8O32 and the monoclinic RbxP8W8nO24n+16 series.  相似文献   

4.
A 7Li NMR investigation of nonstoechiometric ferroelectric phases derived from LiTaO3 has been performed on three solid solutions of formulation Li1+xTa1?x5O3, Li1+xTa1?xTixO3, and Li1?xTa1?3x Ti4xO3. For the first one, based on the substitution of 1 Ta5+ by 5 Li+, the existence of Li+ in both octahedral and tetrahedral sites is confirmed. It is not excluded that the 5 Li+ form a small cluster within seven sites (one octahedral position and six tetrahedral ones) in the vicinity of the substituted Ta5+. For the second solid solution a large variation of the 7Li quadrupolar spectrum with composition has been detected, such behavior is related to the great decrease in Tc near the x = 0.10 composition.  相似文献   

5.
6.
A single crystal study of hydrothermally prepared eight-layer BaMnO3 has been carried out which confirms the (Zhdanov notation) 121121 layer stacking scheme for the BaO3 layers. The MnO6 octahedra share faces in strings of four, and these strings are connected to each other by corner sharing. The compound has an hexagonal unit cell of dimensions a = 5.667 ± 0.003 and c = 18.738 ± 0.009 Å, probable space group P63mmc, Z = 8. Its structure has been determined from 352 independent reflections, of which 242 were considered observed, collected manually by a counter technique and refined to a conventional R value of 0.079.  相似文献   

7.
A new hydrate of tungsten trioxide, WO3 · 13H2O has been obtained by hydrothermal treatment at 120°C of an aqueous suspension of either tungstic acid gel or crystallized dihydrate. This hydrate has been characterized by different methods. A crystallographic study was carried out from X-ray powder diffraction. The hydrate crystallizes in the orthorhombic system: a = 7.359(3) Å, b = 12.513(6) Å, c = 7.704(5) Å, Z = 12. The existence of structural relationships between the hydrate, WO3 · 13H2O, and the product of dehydration, hexagonal WO3, has permitted us to propose a structural model in agreement with the experimental data. WO3 · 13H2O must be regarded as an interesting compound because its dehydration leads to a new anhydrous tungsten trioxide, hexagonal WO3.  相似文献   

8.
The crystal structure of trisodium monophosphate hemihydrate was determined. The space group is C2c and a unit cell contains eight formula units. The unit cell dimensions of Na3PO4 · 12H2O are a = 9.631(3), b = 5.416(2), c = 16.938(8) Å, β = 102.60(5)°. The final R value is 0.027 for a set of 1430 independent reflections. This atomic arrangement is mainly a three-dimensional network of distorted NaO6 octahedra. The hydrogen bonding scheme is given.  相似文献   

9.
A single-crystal study of a sample of Ba4Nb3LiO12 provided by Dr. T. Negas has been carried out and confirms the |(4)|(4)| layer stacking scheme (Zhdanov notation) for the eight BaO3 layers per unit cell. Of the eight MO6 octahedra per cell (M = Nb or Li), four share faces in pairs, and these pairs are linked by pairs of corner-sharing MO6 octahedra. The compound has an hexagonal cell of dimensions a = 5.777 ± 0.006 Å and c = 18.95 ± 0.03 Å, probable space group P63mmc, Z = 2. The theoretical density is 6.22 g/cm3; within the limit of error of the pycnometrically measured density, 6.08 ± 0.06 g/cm3. The study was carried out with 620 independent reflections, of which 437 were considered observed, collected by automated counter methods and refined by least-squares to a conventional R value of 0.076.  相似文献   

10.
The new compound BaSb2S4 crystallizes in the monoclinic system (space group: P21c, No. 14) with a = 8.985(2) Å, b = 8.203(3) Å, c = 20.602(5) Å, β = 101.36(3)°. SbS3 ψ tetrahedra and ψ-trigonal SbS4 bipyramids are connected by common corners and edgers to infinite strings. These are arraged cross-wise in sheets perpendicular to the c axis.  相似文献   

11.
The crystal structure of Cs[VOF3] · 12H2O has been determined and refined on the basis of three-dimensional X-ray diffractometer data (Mo radiation). The structure is monoclinic, a = 7.710(2), b = 19.474(7), c = 7.216(2)Å, β = 116.75(1)°, V = 967.5Å3, Z =8, space group Cc (No. 9). The final R and Rw were 0.0295 and 0.0300, respectively, for 1356 independent reflections and 117 variables.The structure contains two crystallographically different VOF5 octahedra linked so as to form complex chains. Two non-equivalent octahedra share one FF edge, forming V2O2F8 doublets. Two F atoms, connected to different V atoms within the doublet, form an edge in the adjacent equivalent V2O2F8 unit thus continuing the chain. The VO distances are 1.583(7) and 1.595(7) Å. The VF distances are in the range 1.881-2.205 Å, mean value: 1.989 Å. The H2O group is a crystal water molecule.  相似文献   

12.
Single crystals of a new oxide “FeV3O8” (FexV1?xO2: x ? 0.25) have been synthesized by slowly cooling a melted mixture with the composition, 8VO2, 3V2O5, Fe2O3. The chemical formula has been determined by electron microprobe analysis. The compound, isostructural with AlNbO4 and VO2(B), has a monoclinic symmetry, space group C2m; the unit cell dimensions are a = 12.13Å, b = 3.679 Å, c = 6.547 Å, β = 106.85°. A structural refinement based on single crystal data has been carried out. It gave an R-factor of 1.9%. This refinement indicated that the iron and vanadium cations are partially ordered, although the average cation-oxygen distances for the two six-coordinated cations were exactly the same (1.961 Å). This conjecture was supported by the calculation of the cation valences.  相似文献   

13.
The crystal structure of KP8W40O136, the tenth member of the series KxP4O8(WO3)2m, has been resolved by three-dimensional single-crystal X-ray analysis. The space group is P21c and the cell parameters are a = 19.589(3) Å, b = 7.5362(4) Å, c = 16.970(3) Å and β = 91.864(14)°. The framework is built up from ReO3-type slabs connected through pyrophosphate groups. The structure is compared to those of the other members of the series: although the ReO3-type slabs show a different type of tilting of the WO6 octahedra, the dispersion of WO distances is always higher for the octahedra linked to one or two P2O7 groups and decreases in proportion as W is farther from these groups. The perovskite cages of the slabs are described and compared to those encountered in the structures of WO3 and of the bronzes AxWO3.  相似文献   

14.
Crystal structures for the fluorite-related phases CaHf4O9ф1) and Ca6Hf19O44 (ф2) have been determined from X-ray powder diffraction data. qf1 is monoclinic, C2c, with a = 17.698 Å, b = 14.500Å, c = 12.021 Å, β = 119.47° and Z = 16. qf2 is rhombohedral, R3c, with a = 12.058 Å, α = 98.31° and Z = 2.Both phases are superstructures derived from the defect fluorite structure by ordering of the cations and of the anion vacancies. The ordering is such that the calcium ions are always 8-coordinated by oxygen ions, while the hafnium ions may be 6-, 7-, or 8-coordinated. The closest approach of anion vacancies is a 12〈111〉 fluorite subcell vector, and in each structure vacancies with this separation form strings.  相似文献   

15.
The crystal structure of Na4SnS4 and Ba2SnS4 (α) were determined.Na4SnS4 crystallizes in tetragonal system, space group P421c with parameters a = 7.837 Å, c = 6.950 Å, Z = 2 and Ba2SnS4 (α) in the monoclinic system, space group P21c with a = 8.481 Å, b = 8.526 Å, c = 12.280 Å, β = 112.97° and Z = 4.In these compounds, the crystal structure is built up from discrete orthothiostannate tetrahedra SnS4. The structure of Ba2SnS4 (α) is modified K2SO4β type.  相似文献   

16.
β-TeVO4 crystallizes in the monoclinic system with the space group P21c and the parameters: a = 4.379 Å, b = 13.502 Å, c = 5.446 Å, and β = 91.72°. Vanadium occupies the center of a square pyramid of oxygens, an extra oxygen is at VO = 2.77 Å. These distorted octahedra share corners forming puckered sheets parallel to (010). The sheets are held together by [Te2O6]4? groups in which tellurium is one-side coordinated by four oxygen atoms.  相似文献   

17.
18.
The crystal structure of SrFeF5 has been determined by single crystal X-ray diffraction methods.The unit cell is monoclinic (space group P21c) with a = 7.062 ± 0.001 Å, b = 7.289 ± 0.001 Å, c = 14.704 ± 0.001 Å, β = 95.40 ± 0.01° and Z = 8.The lattice is built up of spiral chains of octahedra parallel to the Oy axis. These chains are formed by (FeF6)3? octahedra sharing corners of the same edge. The strontium atoms bridge three neighbouring chains. The SrTiF5, SrVF5, SrCoF5, and BaInF5 phases are isostructural with SrFeF5.  相似文献   

19.
A new form of tungsten trioxide WO3 has been obtained by dehydration of WO3·13H2O hydrate. The structural study was carried out from X-ray powder diffraction and selected area electron diffraction data. The crystallographic characteristics are: the hexagonal system; a = 7.298(2) Å, c = 7.798(3) Å; Z = 6. This hexagonal WO3 is built up of slightly distorted (WO6) octahedra sharing their corners arranged in six-membered rings in layers normal to the hexagonal axis; stacking of such layers leads to formation of large hexagonal tunnels. Some confirmations of this structure were made by high-resolution electron microscopy. Powder X-ray diffraction allowed us to determine an average structure. Absence of suitable single crystals has not permitted us to perform a complete structural determination. Although the existence of such a hexagonal structure for pure WO3 had been considered as likely, it had not been hitherto observed.  相似文献   

20.
Single crystal Na2TeO4 has been prepared by hydrothermal synthesis and its structure determined from three dimensional X-ray analysis. The crystal is monoclinic, space group PP21c with a = 10.632(5)Å, b = 5.161(2)Å; c = 13.837(11)Å, and β = 103.27(4)°. The crystal structure is built up of chains of Te(VI)O6 octahedra parallel to the [010] axis which can be formulated as [TeO4]n2n?. All sodium cations are in very distorted octahedral coordination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号