首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The n=3 Aurivillius material Bi2Sr2Nb2.5Fe0.5O12 is investigated and combined structural refinements using neutron powder diffraction (NPD) and X-ray powder diffraction data (XRPD) data reveal that the material adopts a disordered, tetragonal (I4/mmm) structure at temperatures down to 2 K. Significant ordering of Fe3+ and Nb5+ over the two B sites is observed and possible driving forces for this ordering are discussed. Some disorder of Sr2+ and Bi3+ over the M and A sites is found and is consistent with relieving strain due to size mismatch. Highly anisotropic thermal parameters for some oxygen sites suggest that the local structure may be slightly distorted with some rotation of the octahedra. Magnetic measurements show that the material behaves as a Curie-Weiss paramagnet in the temperature range studied with no evidence of any long-range magnetic interactions. Solid solutions including Bi3−xSrxNb2FeO12, Bi2Sr2−xLaxNb2FeO12 and Bi2Sr2Nb3−xFexO12 were investigated but single-phase materials were only successfully synthesised for a narrow composition range in the Bi2Sr2Nb3−xFexO12 system.  相似文献   

2.
The relative stability of Bi2Mo6 polymorphs was studied by isothermal heating at 250–635°C, and 100–1500 kg/cm2. The results obtained follow: (1) A reversible transition was observed between two stable phases at low (L) and high (H) temperatures, γ(L)-Bi2MoO6 with the koechlinite structure and γ(H)-Bi2MoO6 (=γ′ labeled by Elman). (2) A pressure-temperature phase diagram of Bi2MoO6 was drawn and it showed that the γ(L)-form was more stable than the γ(H)-form in the low-temperature and high-pressure region. (3) The transition temperature of γ(L) ? γ(H) under atmospheric pressure was estimated to be about 570°C by extrapolation of the phase boundary. (4) A third modification, γ″-Bi2MoO6 (a metastable phase), was not detected in the experiments. A free-energy-temperature diagram for the three modifications, γ(L), γ(H), and γ″, is proposed on the basis of the present experimental results and previously published data.  相似文献   

3.
Two new Sr-rich “1201”-type oxides, Bi0.4Sr2.5Cr1.1O4.9 and Bi0.4Sr2.5Fe1.1O5 have been synthesized. These compounds, intergrowths of double rock-salt layers with single perovskite layers, show a 1:1 ordering between (Bi,M) and Sr species within the intermediate rock-salt layer [Bi0.4M0.1Sr0.5O]. The XANES study shows that bismuth is mainly trivalent, whereas iron is mixed valent containing 50% Fe3+ and 50% Fe4+ (also confirmed by Mössbauer), and chromium could be a mixture of Cr3+ and Cr6+ sitting in the perovskite and rock-salt-type sites, respectively. Both compounds exhibit antiferromagnetic interactions. The Cr-phase is a strong insulator, whereas the Fe-phase exhibits a semi-conductor-like resistivity whose value at room temperature is close to that of isotypic cobaltite.  相似文献   

4.
Computer modelling techniques have been used to investigate the defect and oxygen transport properties of the Aurivillius phase Bi4Ti3O12. A range of cation dopant substitutions has been considered including the incorporation of trivalent ions (M3+=Al, Ga and In). The substitution of In3+ onto the Bi site in the [Bi2O2] layer is predicted to be the most favourable. The calculations suggest that lanthanide (Ln3+) doping at the dilute limit preferentially occurs in the [Bi2O2] layer, with probable distribution over both the [Bi2O2] and the perovskite A-site at higher dopant levels. It is predicted that the reduction process involving Ti3+ and oxygen vacancy formation is energetically favourable. The energetics of oxide vacancy migration between various oxygen sites in the structure have been investigated.  相似文献   

5.
Phase relations in the system Bi2O3CdO were studied in the composition range from 90-30 mole% Bi2O3. A new phase, Bi2O3 · CdO, was found to exist up to 925 K. At this temperature it decomposes to form CdO and the 5Bi2O3 · 3CdO phase. The 5Bi2O3 · 3CdO phase is stable between 925 and 963 K and melts incongruently. Below 925 K it decomposes to Bi2O3 · CdO and 6Bi2O3 · CdO. The phase 5Bi2O3 · 3CdO has cubic symmetry. The Sillenite-type bcc phase 6Bi2O3 · CdO forms above 897 K from oxide mixtures in the solid state or from fused oxide mixtures, but the compound could never be prepared as a single phase.  相似文献   

6.
Subsolidus phase relations have been determined for the Bi2O3-Fe2O3-Nb2O5 system in air (900-1075 °C). Three new ternary phases were observed—Bi3Fe0.5Nb1.5O9 with an Aurivillius-type structure, and two phases with approximate stoichiometries Bi17Fe2Nb31O106 and Bi17Fe3Nb30O105 that appear to be structurally related to Bi8Nb18O57. The fourth ternary phase found in this system is pyrochlore (A2B2O6O′), which forms an extensive solid solution region at Bi-deficient stoichiometries (relative to Bi2FeNbO7) suggesting that ≈4-15% of the A-sites are occupied by Fe3+. X-ray powder diffraction data confirmed that all Bi-Fe-Nb-O pyrochlores form with positional displacements, as found for analogous pyrochlores with Zn, Mn, or Co instead of Fe. A structural refinement of the pyrochlore 0.4400:0.2700:0.2900 Bi2O3:Fe2O3:Nb2O5 using neutron powder diffraction data is reported with the A cations displaced (0.43 Å) to 96g sites and O′ displaced (0.29 Å) to 32e sites (Bi1.721Fe0.190(Fe0.866Nb1.134)O7, Fdm (#227), ). This displacive model is somewhat different from that reported for Bi1.5Zn0.92Nb1.5O6.92, which exhibits twice the concentration of small B-type cations on the A-sites as the Fe system. Bi-Fe-Nb-O pyrochlores exhibited overall paramagnetic behavior with large negative Curie-Weiss temperature intercepts, slight superparamagnetic effects, and depressed observed moments compared to high-spin, spin-only values. The single-phase pyrochlore with composition Bi1.657Fe1.092Nb1.150O7 exhibited low-temperature dielectric relaxation similar to that observed for Bi1.5Zn0.92Nb1.5O6.92; at 1 MHz and 200 K the relative permittivity was 125, and above 350 K conductive effects were observed.  相似文献   

7.
The floating-zone furnace method was used to synthesize single crystals of the fluorite-related δ-Bi2O3-type phase Bi38Mo7O78 for the first time. Single crystal synchrotron X-ray diffraction data, in conjunction with ab initio (density functional theory) calculations, were used to solve, optimize, and refine the 5×3×3 commensurate superstructure of fluorite-type δ-Bi2O3 in Pbcn (a=28.7058(11) Å, b=16.8493(7) Å and c=16.9376(6) Å, Z=4, RF=11.26%, wRI=21.67%). The structure contains stepped channels of Mo6+ in tetrahedral environments along the b axis and chains of Mo6+ in octahedral environments along the ac plane. The role of the stepped channels in oxide ion conduction is discussed. The simultaneous presence of both tetrahedral and octahedral coordination environments for Mo6+, something not previously observed in Mo6+-doped δ-Bi2O3-type phases, is supported by charge balance considerations in addition to the results of crystallographic and ab initio analysis.  相似文献   

8.
The structure of the pyrochlore-type oxide Bi2InNbO7 has been investigated between room temperature and 700 °C using electron and synchrotron X-ray powder diffraction and at room temperature and 10 K using neutron diffraction methods. Bi2InNbO7 exhibits an A2B2O7 cubic pyrochlore-type average structure at all temperatures that is characterized by an apparently random mixing of the In3+ and Nb5+ cations on the octahedral B sites. The Bi cations on the eight-coordinate pyrochlore A sites are displacively disordered, presumably as a consequence of their lone pair electron configuration. Heating the sample does not alter this disorder.  相似文献   

9.
We present the controlled solution-phase synthesis of several sheet- or rod-like bismuth oxides, BiOCl, Bi12O17Cl2, α-Bi2O3 and (BiO)2CO3, by adjusting growth parameters such as reaction temperature, mole ratios of reactants, and the base used. BiOCl, Bi12O17Cl2, and α-Bi2O3 could be prepared from BiCl3 and NaOH, whereas (BiO)2CO3 was prepared from BiCl3 and urea. BiOCl and Bi12O17Cl2 could also be prepared from BiCl3 and ammonia. The α-Bi2O3 sample exhibited strong emission at room temperature.  相似文献   

10.
The equilibrium phase diagram between 0 and slightly above 50 mole% Bi2O3 in the Bi2O3MoO3 system has been studied by differential thermogravimetric analysis (DTA) and X-ray diffraction measurements on fused mixtures and single crystals. The results confirm the existence of the four compounds α (Bi2O3·3MoO3), β (Bi2O3·2MoO3), γ (Bi2O3·MoO)3 and ? (~1.3Bi2O3·MoO3) in the system. However, the phase diagram as well as the nature of melting of the α and γ were found disagreed with previous results. The γ compound melts incongruently at 947°C, whereas the α compound melts congruently at 662°C. The crystal class and lattice parameters of the compounds were determined based on the single crystal as well as powder pattern techniques. The results show that all four compounds have the monoclinic structure. The unit cell parameter of the β, γ, and ? compounds were found to be quite different from previously reported data. The lattice parameters obtained from X-ray analysis were also verified by density measurements of the single crystals. The polymorphism of the compounds was also investigated with single crystal samples. No polymorphic transformations for the α, β, and γ phases were detected in the work.  相似文献   

11.
Bi5AgNb4O18 is a new phase, which was discovered during the phase equilibrium study of the Bi2O3-Ag2O-Nb2O5 system. Bi5AgNb4O18 was prepared at 750°C and is stable in air up to its melting temperature of 1160.1±5.0°C (standard error of estimate). Results of a Rietveld refinement using neutron powder diffraction confirmed that Bi5AgNb4O18 is isostructural with Bi3TiNbO9, Bi5NaNb4O18, and Bi5KNb4O18. The structure was refined in the orthorhombic space group A21am, Z=2, and the lattice parameters are a=5.4915(2) Å, b=5.4752(2) Å, c=24.9282(8) Å, and V=749.52(4) Å3. The structure can be described as the m=2 member of the Aurivillius family, (Bi2O2)2+ (Am−1BmO3m+1)2− (where A=Bi and B=Ag, Nb), which is characterized by perovskite-like (Am−1BmO3m+1)2− slabs regularly interleaved with (Bi2O2)2+ layers. The octahedral [NbO6] units are distorted with Nb-O distances ranging from 1.856(4) to 2.161(2) Å and the O-Nb-O angles ranging from 82.6(3)° to 98.5(3)°. These octahedra are tilted about the a- and c-axis by about 10.3° and 12.4°, respectively. Ag was found to substitute exclusively into the Bi-site that is located in the layer between the two distorted [NbO6] units. Although the Ag substitutes into the Bi-site with the Bi:Ag ratio of 1:1, the existence of a superlattice was not detected using electron diffraction. A comparison of (Bi2O2)2+(Am−1NbmO3m+1)2− structures (where A=Ag, Na, and K) revealed a relation between the pervoskite tolerance factor, t, and structural distortion. The reference pattern for Bi5AgNb4O18 has been submitted to the International Centre for Diffraction Data (ICDD) for inclusion in the Powder Diffraction File.  相似文献   

12.
Powder samples of the Cr6+-containing compound Bi6Cr2O15 were prepared by solid state reaction of Bi2O3 and Cr2O3 in air at 650°C. The structure was solved and refined using high-resolution neutron powder diffraction data in space group Ccc2, with anisotropic thermal displacement parameters a=12.30184(5), b=19.87492(7), and c=5.88162(2) Å, V=1438.0 Å3, and 126 variables to RF=1.8%. Bi6Cr2O15 exhibits a new structure type that contains (Bi12O14)8n+n columns, of the kind previously found only for phases isotypic with Bi13Mo4VO34. Each column is surrounded by eight CrO2−4 tetrahedra. The ionic conductivity of Bi6Cr2O15 was determined by impedance measurements to be 3.5×10−5 (Ω cm)−1 at 600°C.  相似文献   

13.
A new oxide, Bi14Sr21Fe12O61, with a layered structure derived from the 2212 modulated type structure Bi2Sr3Fe2O9, was isolated. It crystallizes in the I2 space group, with the following parameters: a=16.58(3) Å, b=5.496(1) Å, c=35.27(2) Å and β=90.62°. The single crystal X-ray structure determination, coupled with electron microscopy, shows that this ferrite is the m=5 member of the [Bi2Sr3Fe2O9]m[Bi4Sr6Fe2O16] collapsed family. This new collapsed structure can be described as slices of 2212 structure of five bismuth polyhedra thick along , shifted with respect to each other and interconnected by means of [Bi4Sr6Fe2O16] slices. The latter are the place of numerous defects like iron or strontium for bismuth substitution; they can be correlated to intergrowth defects with other members of the family.  相似文献   

14.
The crystal structure of the phase previously reported to occur at 4:9 Bi2O3:Nb2O5 has been determined using single-crystal X-ray and powder neutron diffraction (P63/mmc; a=7.4363(1) Å, c=19.7587(5) Å; Z=2). The structural study combined with phase equilibrium analyses indicate that the actual composition is Bi3.32Nb7.09O22.7. This binary compound is the end-member of a family of four phases which form along a line between it and the pyrochlore phase field in the Bi2O3:Fe2O3:Nb2O5 system. The structures are derived from the parent pyrochlore end-member by chemical twinning, and can also be described as unit-cell intergrowths of the pyrochlore and hexagonal tungsten bronze (HTB) structures. The dielectric properties of the three chemically twinned pyrochlore phases, Bi3.32Nb7.09O22.7, Bi9.3Fe1.1Nb16.9O57.8 and Bi5.67FeNb10O35, were characterized. All exhibit low-temperature, broad dielectric relaxation similar to that of the Bi-Fe-Nb-O pyrochlore. At 1 MHz and ≈175 K the observed relative permittivites were 345, 240, and 205, respectively, compared to 125 for the Bi-Fe-Nb-O pyrochlore. The higher relative permittivities observed for the chemically twinned pyrochlore derivatives are ascribed to the presence of HTB blocks in their structures: The Bi atoms located in the HTB blocks feature highly asymmetric coordination environments compared to pyrochlore, and the magnitude of the relative permittivity increases with the proportion of Bi located within the HTB portions of the structures.  相似文献   

15.
Powder mixtures of α-Bi2O3 (bismite) and monoclinic m-ZrO2 (baddeleyite) in the molar ratio 2:3 were mechanochemically and thermally treated with the goal to examine the phases, which may appear during such procedures. The prepared samples were characterized by X-ray powder diffraction, differential scanning calorimetry (DSC), electrical measurements, as well as scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The mechanochemical reaction leads to the gradual formation of a nanocrystalline phase, which resembles δ-Bi2O3, a high-temperature Bi2O3 polymorph. Isothermal sintering in air at a temperature of 820 °C for 24 h followed by quenching to room temperature yielded a mixture of ZrO2-stabilized β-Bi2O3 and m-ZrO2 phases, whereas in slowly cooled products, the complete separation of the initial α-Bi2O3 and m-ZrO2 constituents was observed. The dielectric permittivity of the sintered samples significantly depended on the temperature. The sintered and quenched samples exhibited a hysteresis dependence of the dielectric shift, showing that the ZrO2-doped β-Bi2O3 phase possess ferroelectric properties, which were detected for the first time. This fact, together with Rietveld refinement of the β-Bi2O3/m-ZrO2 mixture based on neutron powder diffraction data showed that ZrO2-doped β-Bi2O3 has a non-centrosymmetric structure with as the true space group. The ZrO2 content in the doped β-Bi2O3 and the crystal chemical reasons for the stabilization of the β-Bi2O3 phase by the addition of m-ZrO2 are discussed.  相似文献   

16.
The paper presents a new data on the crystal structure, thermal expansion and IR spectra of Bi3B5O12. The Bi3B5O12 single crystals were grown from the melt of the same stoichiometry by Czochralski technique. The crystal structure of Bi3B5O12 was refined in anisotropic approximation using single-crystal X-ray diffraction data. It is orthorhombic, Pnma, a=6.530(4), b=7.726(5), c=18.578(5) Å, V=937.2(5) Å3, Z=4, R=3.45%. Bi3+ atoms have irregular coordination polyhedra, Bi(1)O6 (d(B-O)=2.09-2.75 Å) and Bi(2)O7 (d(B-O)=2.108-2.804 Å). Taking into account the shortest bonds only, these polyhedra are considered here as trigonal Bi(1)O3 (2.09-2.20 Å) and tetragonal Bi(2)O4 (2.108-2.331 Å) irregular pyramids with Bi atoms in the tops of both pyramids. The BiO4 polyhedra form zigzag chains along b-axis. These chains alternate with isolated anions [B2IVB3IIIO11]7− through the common oxygen atoms to form thick layers extended in ab plane. A perfect cleavage of the compound corresponds to these layers and an imperfect one is parallel to the Bi-O chains. The Bi3B5O12 thermal expansion is sharply anisotropic (α11α22=12, α33=3×10−6 °C−1) likely due to a straightening of the flexible zigzag chains along b-axis and decreasing of their zigzag along c-axis. Thus the properties like cleavage and thermal expansion correlate to these chains.  相似文献   

17.
Subsolidus phase relations have been determined for the Bi-Mn-Nb-O system in air (750-900 °C). Phases containing Mn2+, Mn3+, and Mn4+ were all observed. Ternary compound formation was limited to pyrochlore (A2B2O6O′), which formed a substantial solid solution region at Bi-deficient stoichiometries (relative to Bi2(Mn,Nb)2O7) suggesting that ≈14-30% of the A-sites are occupied by Mn (likely Mn2+). X-ray powder diffraction data confirmed that all Bi-Mn-Nb-O pyrochlores form with structural displacements, as found for the analogous pyrochlores with Mn replaced by Zn, Fe, or Co. A structural refinement of the pyrochlore 0.4000:0.3000:0.3000 Bi2O3:Mn2Ox:Nb2O5 using neutron powder diffraction data is reported with the A and O′ atoms displaced (0.36 and 0.33 Å, respectively) from ideal positions to 96g sites, and with Mn2+ on A-sites and Mn3+ on B-sites (Bi1.6Mn2+0.4(Mn3+0.8Nb1.2)O7, (?227), a=10.478(1) Å); evidence of A or O′ vacancies was not found. The displacive disorder is crystallographically analogous to that reported for Bi1.5Zn0.92Nb1.5O6.92, which has a similar concentration of small B-type ions on the A-sites. EELS spectra for this pyrochlore were consistent with an Mn oxidation between 2+ and 3+. Bi-Mn-Nb-O pyrochlores exhibited overall paramagnetic behavior with negative Curie-Weiss temperature intercepts, slight superparamagnetic effects, and depressed observed moments compared to high-spin, spin-only values. At 300 K and 1 MHz the relative dielectric permittivity of Bi1.600Mn1.200Nb1.200O7 was ≈128 with tan δ=0.05; however, at lower frequencies the sample was conductive which is consistent with the presence of mixed-valent Mn. Low-temperature dielectric relaxation such as that observed for Bi1.5Zn0.92Nb1.5O6.92 and other bismuth-based pyrochlores was not observed. Bi-Mn-Nb-O pyrochlores were readily obtained as single crystals and also as textured thin films using pulsed laser deposition.  相似文献   

18.
The polymorphism of Bi2MoO6 has been studied by differential thermal analysis, differential dilatometry, and differential scanning calorimetry with γ form specimens having the koechlinite structure prepared by sintering the oxides Bi2O3 and MoO3. Two stable γ and γ′ forms and one metastable γ″ form were observed. The relative thermal stability of the γ form compared with the γ′ form has been examined by isothermal heating of a mixture of the two forms under hydrothermal conditions. Thus the low-temperature stable γ form transformed reversibly to the γ″ form at 604 ± 3°C, and on subsequent heating, the γ″ form transformed irreversibly to the high-temperature stable γ′ form in the range 640 to 670°C, depending on heating rates; however, an isothermal treatment at a temperature above 604 ± 3°C brought the gradual transition of the γ″ form into the γ′ form.  相似文献   

19.
Two pure light rare earth iron garnets Pr3Fe5O12 and Nd3Fe5O12 single crystals were synthesized under mild hydrothermal conditions and structurally characterized by single crystal and powder X-ray diffraction methods. Both compounds crystallize in cubic space group Ia3?d with lattice parameters a=12.670(2) Å for Pr3Fe5O12 and a=12.633(2) Å for Nd3Fe5O12, respectively. The synthesis of compounds was studied with regard to phase evolution and morphology development with hydrothermal conditions. We proposed the formation mechanisms and formulated a reasonable explanation for their growth habits. Ferrimagnetic Curie temperatures which have been inferred from thermo-magnetization curves were 580 K for Pr3Fe5O12 and 565 K for Nd3Fe5O12, and the transitions of long range order were also evidenced by differential scanning calorimetry method. The result of magnetic properties has shown that moments of the large radius Pr3+ and Nd3+ ions are parallelly coupled with net moments of iron ions.  相似文献   

20.
By using neutron diffraction together with anomalous dispersion X-ray diffraction, it has been possible to ascertain the distribution of close atomic numbered cations in CoMnxFe2?xO4 system spinels.At 950°C, these compounds have a cubic structure in the range 0 ? x ? 1.25 and exhibit a macroscopic tetragonal distortion as soon as 60% of the Mn3+ ions occupy octahedral sites.The great mobility of cobalt between both types of sites has been pointed out; it can be related to oxidation and reduction phenomena. In these compounds, Fe3+ iron remains neutral towards four or six coordinences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号