首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a study of synthetic resin analysis, 13C NMR spectra of phenol resins were measured, and the chemical shifts of the various carbon sites compared with the resins' reactivity with formaldehyde. Measurements were made with phenol, para-substituted phenols, chlorophenols, hydroxytoluenes, dimethyl(hydroxy)benzenes, dihydroxybenzenes, and dihydroxytoluenes. The chemical shifts of these phenols were compared with calculated shifts obtained by using a simple summing rule. These chemical shifts are closely related in magnitude to the reactivity of the phenols with formaldehyde. For example, resorcin has the greatest reactivity with formaldehyde of the above-mentioned phenols and this experimental result agrees well with the measured large 13C chemical shifts for resorcin.  相似文献   

2.
Prediction of chemical shifts in organic cations is known to be a challenge. In this article we meet this challenge for α-protonated alkylpyrroles, a class of compounds not yet studied in this context, and present a combined experimental and theoretical study of the 13C and 1H chemical shifts in three selected pyrroles. We have investigated the importance of the solvation model, basis set, and quantum chemical method with the goal of developing a simple computational protocol, which allows prediction of 13C and 1H chemical shifts with sufficient accuracy for identifying such compounds in mixtures. We find that density functional theory with the B3LYP functional is not sufficient for reproducing all 13C chemical shifts, whereas already the simplest correlated wave function model, Møller–Plesset perturbation theory (MP2), leads to almost perfect agreement with the experimental data. Treatment of solvent effects generally improves the agreement with experiment to some extent and can in most cases be accomplished by a simple polarizable continuum model. The only exception is the NH proton, which requires inclusion of explicit solvent molecules in the calculation.  相似文献   

3.
Chemical shifts and substituent chemical shift (SCS) effects are reported for 21 monosubstituted iso-quinolines, carrying a halogeno, amino, piperidino or ethoxy group in position 1, 3 or 4. In some cases, assignments of 13C resonances were based on the spectra of the corresponding 5-deutero derivatives. For the fluoroisoquinolines some 13CF coupling constants are given. The 13C NMR spectra of 15 disubstituted isoquinolines were measured; with a few exceptions, mainly the 3,4- and 1,4-disubstituted isoquinolines, the chemical shifts agreed well with those calculated by addition of the SCS effects.  相似文献   

4.
A convenient methodology was developed for a very accurate calculation of 13C NMR chemical shifts of the title compounds. GIAO calculations with density functional methods (B3LYP, B3PW91, PBE1PBE) and 6-311+G(2d,p) basis set predict experimental chemical shifts of 3-ethynylcyclopropene (1), 1-ethynylcyclopropane (2) and 1,1-diethynylcyclopropane (3) with high accuracy of 1–2 ppm. The present article describes in detail the effect of geometry choice, density functional method, basis set and effect of solvent on the accuracy of GIAO calculations of 13C NMR chemical shifts. In addition, the particular dependencies of 13C chemical shifts on the geometry of cyclopropane ring were investigated.  相似文献   

5.
With the help of chemical shifts computed with density functional theory (DFT), it is demonstrated that the reported experimental 13C NMR data of acremolin C are incompatible with the claimed structure of an N2,3-ethenoguanine with an isopropyl group at C-1'. An alternative structure, which is in agreement with both experimental and computed data, presents an isopropyl group at the C-2' position of an N2,3-ethenoguanine and leads to the conclusion that acremolin C is identical with acremolin B.  相似文献   

6.
According to the 13C NMR data, the chemical shift of the methyl carbon atom in acetone azine in the trans position with respect to the lone electron pair on the neighboring nitrogen atom is lower by 7 ppm than that of the methyl carbon atom in the cis position. The corresponding direct 13C-13C coupling constant for the trans-methyl groups is lower by 10 Hz as compared to the cis-methyl groups. The experimental spectral data are reproduced well by nonempirical quantum-chemical calculations. The observed stereospecificity of 13C chemical shifts and 13C-13C coupling constants may be used as an effective tool in configurational analysis of various ketone azines.  相似文献   

7.
Chemical shifts in 19F and 13C NMR spectra of substituted pentafluorobenzenes are calculated by Hartree-Fock and density functional theory methods. The calculated values are compared with the experimental data known from the literature. It is shown that chemical shifts in non-polar solvents can be predicted sufficiently accurately by the GIAO-DFT(PBE/L22) method. This method is used to predict the 19F and 13C chemical shifts of a heptafluorobenzyl cation in the SbF5 medium. The best agreement between the calculated and experimental values is achieved when the counterion effect is taken into account.  相似文献   

8.
Experimental and theoretical 15N and 13C NMR data for the three nitrobenzaldehyde guanylhydrazones are reported. The theoretical data were obtained using sequential molecular dynamics/quantum mechanics methodology for the calculation of flexible molecules in a condensed phase, followed by the use of the GIAO/DFT method with the 6–311G** basis set. The experimental 15N chemical shifts for the guanylhydrazones are compared with the calculated shifts. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
The 15N and 13C chemical shifts of 6‐(fluoro, chloro, bromo, and iodo)purine 2′‐deoxynucleoside derivatives in deuterated chloroform were measured. The 15N chemical shifts were determined by the 1H? 15N HMBC method, and complete 15N chemical‐shift assignments were made with the aid of density functional theory (DFT) calculations. Inclusion of solvation effects significantly improved the precision of the calculations of 15N chemical shifts. Halogen‐substitution effects on the 15N and 13C chemical shifts of purine rings are discussed in the context of DFT results. The experimental coupling constants for 19F interacting with 15N and 13C of the 6‐fluoropurine 2‐deoxynuleoside are compared with those from DFT calculations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
The 13C n.m.r. spectra of fourteen chlorocyclohexanones have been recorded to examine the variation of the 13C chemical shifts as a function of the position and the number of the chlorine substituents. Additivity relationships were found which enable reasonable prediction of the chemical shifts of chlorinated cyclohexanones. Comparison between the observed and calculated chemical shifts of mono- and dichlorinated flexible molecules shows that the chlorine effects are additive.  相似文献   

11.
1H and 13C NMR spectra of 8-hydroxyquinoline (oxine) and its 5-Me, 5-F, 5-Cl, 5-Br and 5-NO2 derivatives have been studied in DMSO-d6 solution. The 1H and 13C chemical shifts and proton–proton, proton–fluorine, carbon–proton and carbon–fluorine coupling constants have been determined. The 1H and 13C chemical shifts have been correlated with the charge densities on the hydrogen and carbon atoms calculated by the CNDO/2 method. The correlation of the 1H and 13C chemical shifts with the total charge densities on the carbon atoms is approximately linear (rH2 = 0.85, rC2 = 0.84). The proton in peri position to the nitro group in 5-NO2-oxine is an exception.  相似文献   

12.
13.
Calculations of the dependence of 13C chemical shifts on the dielectric constant, ?, of the medium are reported using the INDO/S parameterized version of Pople's method together with the solvaton model. Satisfactory agreement with the available experimental data is obtained. The rather sensitive dependence of chemical shift upon ? suggests that polar solute—solvent interactions in aprotic media should be taken into account when considering 13C chemical shifts.  相似文献   

14.
The effect of substituents in the ring of 9-methylcarbazoles on the 13C NMR chemical shifts was determined. Correlation relationships between the inductive and resonance constants of the substituents and the chemical shifts were found. The transmission properties of the carbazole ring with respect to the electronic effects of substituents in the 3 position were evaluated on the basis of the results obtained. Nonadditivity of the effects of the substituents on the NMR chemical shifts within the limits of one phenyl ring of carbazole relative to monosubstituted benzenes was observed.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 2, pp. 204–209, February, 1984.  相似文献   

15.
3-Methylfurazans with nitrogen-containing substituents at position 4 were studied by 1H, 13C, and 14N NMR spectroscopy. A correlation between the chemical shifts in 13C NMR spectra of these furazans and monosubstituted benzenes with the same substituents was found. The increments for a number of furazan-containing substituents were determined for the first time.  相似文献   

16.
13C n.m.r. chemical shifts of a number of 1,1-disubstituted ethylenes are presented. Moreover, effects of changing temperatures on the 13C n.m.r. chemical shifts of some of these compounds as well as of three normal alkanes are given. These variations in chemical shifts are attributed to varying amounts of sterically induced shifts in the different conformational equilibria. In addition to the well-known 1,4 interaction between two alkyl groups shielding effects on the carbon atoms of the connecting bonds are also proposed. No definite explanation of this effect is presented at this time. It is further shown that no simple correlations exist between 13C n.m.r. chemical shifts and calculated total charge densities at this level. Instead, the experimental results in 1-alkenes are rationalized by assuming a linear dependence of the 13C n.m.r. chemical shifts of C-1 and C-2 via rehybridizations on changes in bond angles for small skeletal deformations caused by steric interactions. These changes in geometries, as well as conformational energies in three 1-alkenes, were calculated by means of VFF calculations. Finally. upfield shifts for both C-2 and C-4 are proposed for those conformations of 1-alkenes in which the C-3? C-4 group interacts with the pz-orbital of C-2.  相似文献   

17.
A series of model sulfides was oxidized in the NMR sample tube to sulfoxides and sulfones by the stepwise addition of meta‐chloroperbenzoic acid in deuterochloroform. Various methods of quantum chemical calculations have been tested to reproduce the observed 1H and 13C chemical shifts of the starting sulfides and their oxidation products. It has been shown that the determination of the energy‐minimized conformation is a very important condition for obtaining realistic data in the subsequent calculation of the NMR chemical shifts. The correlation between calculated and observed chemical shifts is very good for carbon atoms (even for the ‘cheap’ DFT B3LYP/6‐31G* method) and somewhat less satisfactory for hydrogen atoms. The calculated chemical shifts induced by oxidation (the Δδ values) agree even better with the experimental values and can also be used to determine the oxidation state of the sulfur atom (? S? , ? SO? , ? SO2? ). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
The PBE0/pcSseg-2//pcseg-2 calculations of 1H and 13C NMR chemical shifts were performed for a classical series of 12 Strychnos alkaloids (except for the earlier studied parent strychnine), namely akuammicine, isostrychnine, rosibiline, tsilanine, spermostrychnine, diaboline, cyclostrychnine, henningsamide, strychnosilidine, strychnobrasiline, holstiine, and icajine. It was found that the calculated 1H and 13C NMR chemical shifts show markedly good correlations with available experimental data, as characterized by a mean absolute error of 0.22 ppm for the range of 8 ppm for protons and 1.97 ppm for the range of 180 ppm for carbons. Complementarily, the present results provide essential NMR update and fill a gap in the NMR data of this distinguished group of vitally important natural products.  相似文献   

19.
Proton and carbon-13 chemical shifts of para-substituted stilbenes have been measured. 1H-1H, 1H-13C COSY spectra were obtained to analyze unambiguously the chemical shifts of protons and carbons. A long range coupling between 2-H and α-H was observed in a 1H-1H COSY spectrum. The observed chemical shifts have been correlated with Hammett substituent parameters. Among ethenyl protons and carbons, all but the chemical shifts of α-H show good correlation with both dual substituent parameters and single substituent parameters. In addition to this finding, the excellent linear correlations of C-l, and 4′-H of 4-substituted trans-stilbenes are also reported. Besides the correlations of chemical shifts with Hammett parameters, a good correlation between the chemical shifts and the calculated charges of position C-4′ are reported.  相似文献   

20.
Ten new pyrazoles have been prepared and their 13C nmr chemical shifts compared with those of twelve other pyrazoles, some of them prepared purposely for this study. The chemical shifts are discussed statistically assuming that they are additive. A formyl group in the position 4 of the pyrazole ring produces a large effect on carbon C4 (SCS = 17.3 ppm) and medium effects on carbons C3 (SCS = 1.9 ppm) and C5 (SCS = 3.8 ppm). The azines derived from pyrazole-4-carboxaldehydes are of the E,E-configuration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号