首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
A novel semi‐IPN nanocomposite hydrogel (CMC/PNIPA/Clay hydrogel) based on linear sodium carboxymethylcellulose (CMC) and poly(N‐isopropylacrylamide) (PNIPA) crosslinked by inorganic clay was prepared. The structure and morphology of these hydrogels were investigated and their swelling and deswelling kinetics were studied in detail. TEM images showed that the clay was substantially exfoliated to form nano‐dimension platelets dispersed homogeneously in the hydrogels and acted as a multifunctional crosslinker. The CMC/PNIPA/Clay hydrogels swell faster than the corresponding PNIPA/Clay hydrogels at pH 7.4, whereas they swell slower than the PNIPA/Clay hydrogels at pH 1.2. The CMC/PNIPA/Clay nanocomposite hydrogels showed much higher deswelling rates, which was ascribed to more passway formed in these hydrogels for water to diffuse in and out. The deswelling process of the hydrogels could be approximately described by the first‐order kinetic equation and the deswelling rate decreased with increasing clay content. The mechanical properties of the CMC/PNIPA/Clay nanocomposite hydrogels were analyzed based on the theory of rubber elasticity. It was found that with increasing clay content, the effective crosslink chain density, ve, increased whereas the molecular weight of the chains between crosslinks Mc decreased. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1546–1555, 2008  相似文献   

2.
A novel poly(N‐isopropylacrylamide) (PNIPA)/PNIPA interpenetrating polymer network (IPN) was synthesized and characterized. In comparison with conventional PNIPA hydrogels, the shrinking rate of the IPN hydrogel increased when gels, swollen at 20 °C, were immersed in 50 °C water. The phase‐transition temperature of the IPN gel remained unchangeable because of the same chemical constituent in the PNIPA gel. The reswelling kinetics were slower than those of the PNIPA hydrogel because of the higher crosslinking density of the IPN hydrogel. The IPN hydrogel had better mechanical strength because of its higher crosslinking density and polymer volume fraction. The release behavior of 5‐fluorouracil (5‐Fu) from the IPN hydrogel showed that, at a lower temperature, the release of 5‐Fu was controlled by the diffusion of water molecules in the gel network. At a higher temperature, 5‐Fu inside the gel could not diffuse into the medium after a burst release caused by the release of the drug on the surface of the gel. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1249–1254, 2004  相似文献   

3.
Poly(acrylamide‐co‐acrylic acid)/polyacrylamide [P(AM‐co‐AA)/PAM] hydrogel with superporous and interpenetrating network (IPN) structure was prepared by a prepolymerization reaction and a synchronous polymerization reaction and frothing process. Scanning electron microscope (SEM) images show that the resultant hydrogel possesses abundant interconnected pores. DSC indicates that the porous structure enhances the swelling ratio and reduces the interaction between water and the hydrogel. In contrast, the IPN by PAM decreases water absorbency and enhances water retentivity. It is found that a superporous stucture in the hydrogel increases the equilibrium swelling ratio and decreases the compressive strength of the hydrogel. On the other hand, the increase in AM oligomer (oligo‐AM) amount decreases the equilibrium swelling ratio and improves the compressive strength of the hydrogel. Therefore, the two‐steps synthesis method can be used to construct a hydrogel with superporous and IPN structure. The swelling and mechanical properties of the hydrogel can be improved effectively. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
Composite ionic‐covalent entanglement (ICE) hydrogel networks were prepared from poly(N‐isopropylacrylamide), alginate, and carbon nanofibres. An optimised triple network hydrogel with 86% water content exhibited a compressive strength of 3.0 ± 0.1 MPa and 66 ± 13 mS/cm electrical conductivity. Thermal actuation was shown to have a shorter response time for gels containing nanofibres, compared to those which did not and hydrogel samples more than halved in volume within 1 minute when placed in a 60 °C water bath. Controlled dye release was demonstrated as a potential application and used to further quantify thermal actuation over short times. Joule heating techniques were used to electronically actuate the hydrogel samples, removing the traditional requirements for immersion in a temperature controlled liquid. It is expected that devices based on these materials will find potential applications in soft robotics and micro fluidics. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 46–52  相似文献   

5.

The purpose of this investigation was to report the synthesis of a novel pH‐sensitive acrylate‐based hydrogel by polymerizing the comonomers 2‐hydroxyethyl methacrylate, HEMA, acrylic acid, AA, and sodium acrylate, NaAc. The NaAc component was obtained by neutralization of AA with sodium hydroxide. Hydrogels were obtained by free radical copolymerization in aqueous solution in the presence of redox initiators, Na2S2O8/Na2S2O5, and ethylene glycol dimethacrylate, EGDMA, crosslinker. The copolymers were synthesized by varying neutralization percent of AA in the range of 10–100. The swelling behavior of the copolymeric gels were investigated as a function of pH, temperature, ionic strength, and AA neutralization percent. The polymer mesh size, ξ, molecular weight between crosslinks, Mc , and crosslinking density, q, were determined by using the Flory‐Rehner equation in the pH range of 2–8 as 8.78–48.8 Å, 209–2667 g/mol, and 0.046–0.59, respectively. The diffusional exponent value, n, of the synthesized hydrogel was found to be 0.59, indicating a non‐Fickian diffusion mechanism. It can be concluded that the hydrogel demonstrated a sharp change in its water absorbency, mesh size and molecular weight between crosslinks of the network with a change in pH of the swelling media. The latter properties suggest strong consideration of these hydrogels for use as oral drug delivery systems and ion‐exchangers for removal of metal ions from aqueous media, owing to the carboxylate groups within the polymeric network.  相似文献   

6.
Recently, metal coordination has been widely utilized to fabricate high‐performance hydrogels, but conventional metal‐based hydrogels face some drawbacks, such as staining or acid lability. In the present study, a novel kind of colorless Zr(IV)‐crosslinked polyacrylamide/polyanionic cellulose (PAM/PAC) composite hydrogel with unique acid resistance was constructed via acrylamide polymerization in a PAC solution, followed by posttreatment in a zirconium oxychloride (ZrOCl2) solution. The prepared gels were characterized in terms of Fourier transform infrared spectroscopy, scanning electron microscopy, and tensile and compressive mechanics, as well as acid resistance. Inside the gels, the synergistic action of hydrogen bonding and Zr(IV) coordination is responsible for their improved mechanical properties and good energy dissipation ability. One hydrogel with nearly 90 wt % of water content can sustain approximately 5 MPa of compression stress at 90% strain without damage. Both microscopic network structures and macroscopic mechanics demonstrate facile adjustability via changing the PAC dosages in polymerization and/or ZrOCl2 concentrations in posttreatment. Moreover, the gels present unexpected acid resistance due to the strong Zr(IV) coordination with PAC, demonstrating their potential application as hydrogel electrolytes in supercapacitors. The current work provides a new approach to fabricate metal coordination‐based high strength, colorless hydrogels with acid resistance. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 981–991  相似文献   

7.
A series of granulated semi‐interpenetrating polymer network (semi‐IPN) superabsorbent hydrogels composed of chitosan‐g‐poly(acrylic acid) (CTS‐g‐PAA) and poly(vinyl alcohol) (PVA) were prepared by solution polymerization using ammonium persulfate (APS) as an initiator and N,N′‐methylenebisacrylamide (MBA) as a crosslinker. The effects of reaction conditions such as the concentration of MBA, the weight ratio of AA to CTS, and the content of PVA on water absorbency were investigated. Infrared (IR) spectra and differential scanning calorimetry (DSC) analyses confirmed that AA had been grafted onto CTS backbone, and PVA semi‐interpenetrating into CTS‐g‐PAA networks. SEM analyses indicated that CTS‐g‐PAA/PVA has improved porous surface and PVA was uniformly dispersed in CTS‐g‐PAA network. The semi‐IPN hydrogel containing 10 wt% PVA shows the highest water absorbency of 353 and 53 g g?1 in distilled water and 0.9 wt% NaCl solution, respectively. Swelling behaviors revealed that the introduction of PVA could improve the swelling rate and enhance the pH stability of the superabsorbent hydrogel. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
用顺丁烯二酸酐 (MAH)对具有分子包结能力的 β 环糊精 (β CD)进行化学改性 ,合成出了丁烯二酸单酯化 β CD单体 (MAH β CD) .通过氧化还原自由基引发MAH β CD与N 异丙基丙烯酰胺 (NIPA)聚合 ,合成出含 β CD结构单元的新型水凝胶 .用核磁共振、红外光谱及元素分析对MAH β CD单体及共聚物的结构和组成进行了表征 .溶胀研究结果表明 ,该水凝胶具有较好的pH、温度及离子强度敏感性 ;并且水凝胶在较高羧基(—COOH)含量和弱碱环境中 ,仍能表现出明显的温敏性  相似文献   

9.
A novel poly(acrylic acid)‐iron rich smectite (IRS) superabsorbent composite was synthesized by graft copolymerization reaction of acrylic acid (AA) in the presence of N,N‐methylenebisacrylamide (MBA) as a crosslinker. IRS was used to strengthen the hydrogel products in the polymerization process. Water absorbencies for these superabsorbent composites in water and saline solutions were investigated. IRS caused a reduced equilibrium swelling as low as 8–26%. However, grafted IRS particles resulted in improved gel strength as high as 66% compared to the IRS‐free sample. IRS modified superabsorbent hydrogel composites exhibited higher thermal stability compared to the IRS‐free sample. The pH dependent reversible swelling behavior of hydrogels was also investigated. It is found that the swelling process is pH dependent and reversible for synthesized superabsorbent. Superabsorbent hydrogel composites were characterized by thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). FTIR spectroscopy was confirmed grafting of acrylic chains onto the surface of IRS particles. From the standpoint of these results, these strengthened and thermostabilized hydrogels may be considered as good candidates for a controlled release study and agricultural applications. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
We present novel redox‐responsive hydrogels based on poly(N‐isopropylacrylamide) or poly(acrylamide), consisting of a reversible disulfide crosslinking agent N,N′‐bis(acryloyl)cystamine and a permanent crosslinking agent N,N′‐methylenebisacrylamide for microfluidic applications. The mechanism of swelling/deswelling behavior starts with the cleavage and reformation of disulfide bonds, leading to a change of crosslinking density and crosslinking points. Raman and ultraviolet‐visible spectroscopy confirm that conversion efficiency of thiol–disulfide interchange up to 99%. Rheological analysis reveals that the E modulus of hydrogel is dependent on the crosslinking density and can be repeatedly manipulated between high‐ and low‐stiffness states over at least 5 cycles without significant decrease. Kinetic studies showed that the mechanical strength of the gels changes as the redox reaction proceeds. This process is much faster than the autonomous diffusion in the hydrogel. Moreover, cooperative diffusion coefficient (Dcoop) indicates that the swelling process of the hydrogel is affected by the reduction reaction. Finally, this reversibly switchable redox behavior of bulky hydrogel could be proven in microstructured hydrogel dots through short‐term photopatterning process. These hydrogel dots on glass substrates also showed the desired short response time on cyclic swelling and shrinking processes known from downsized hydrogel shapes. Such stimuli‐responsive hydrogels with redox‐sensitive crosslinkers open a new pathway in exchanging analytes for sensing and separating in microfluidics applications. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2590–2601  相似文献   

11.
The poly‐N‐isopropylacrylamide intelligent hydrogel actuators with high mechanical strength and efficient temperature responses were successfully prepared via molding and three‐dimensional (3D) printing. Addition of nanofibrillated cellulose (NFC) effectively improved the crosslinking density and viscosity of hydrogels, enhancing the mechanical strength and 3D printable property. Based on sufficient polymerization on interface, bilayer hydrogel actuator prepared via molding exhibited efficient bending/unbending deformations. Bending degree in poikilothermy temperature ranging from 25°C to 55°C was higher than that in constant temperature of 55°C. Inspired by the rheology regulation of NFC, 3D printing intelligent hydrogel actuators with NFC content of 10 mg/mL were polymerized efficiently by ultraviolet irradiation. Self‐driven deformation characteristics of 3D printed intelligent hydrogels actuators were regulated via printing parameters including angle, width and length ratio and filling rate of the layered network structure model. The prepared hydrogel material system with molding and 3D printing ability provided material candidates for design and preparation of intelligent soft actuator and robot.  相似文献   

12.
P(AA)‐Ag heterogeneous catalyst system comprised of Ag nanoparticles embedded within hydrogel matrices has been described for the selective aerobic oxidation of alcohols and reduction of nitro phenols in water. P(AA)‐Ag nanocomposite was characterized by Fourier transform infrared (FT‐IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), X‐Ray photoelectron spectroscopy (XPS) and inductively coupled plasma atomic emission spectrometer (ICP). Catalytic activity of p(AA)‐Ag catalyst was investigated in the aerobic oxidation of primary alcohols and reduction of nitro compounds by emphasizing the effect of different parameters such as temperature, catalyst amount, substituent effect, etc. The catalyst was easily recovered from the reaction medium and it could be re‐used for other three runs without significant loss of activity.  相似文献   

13.
Acrylamide (AAm)‐2‐acrylamide‐2‐methylpropanesulfonic acid sodium salt (AMPSNa) hydrogel and AAm‐AMPSNa/clay hydrogel nanocomposite having 10 w% clay was prepared by in situ copolymerization in aqueous solution in the presence of a crosslinking agent (N,N′‐methylenebisacrylamide (NMBA)). Swelling properties and kinetics of the hydrogel samples were investigated in water and aqueous solutions of the Safranine‐T (ST) and Brilliant Cresyl Blue (BCB) dyes. The swelling and diffusion parameters were also calculated in water and dye solutions. It was observed that the AAm‐AMPSNa/clay hydrogel nanocomposite exhibits improved swelling capacity compared with the AAm‐AMPSNa hydrogel. It was also found that the diffusion mechanisms show non‐Fickian character. Adsorption properties of the hydrogel samples in the aqueous solution of ST and BCB dyes were also investigated. Clay incorporation into the hydrogel structure increased not only the adsorption capacity but also the adsorption rate. Adsorption capacity values of the hydrogel nanocomposite were found to be 484.2 and 494.2 mg g?1 for the ST and BCB dyes, respectively. It was seen that the adsorption of dyes by the hydrogel nanocomposite completed in 10 min while the AAm‐AMPSNa hydrogel adsorbed dyes approximately in 90 min. Adsorption data of the samples were modelled by the pseudo‐first‐order and pseudo‐second‐order kinetic equations in order to investigate dye adsorption mechanism. It was found that the adsorption kinetics of hydrogel nanocomposite followed a pseudo‐second‐order model. Equilibrium isotherms were analyzed using the Langmuir and Freundlich isotherms. It was seen that the Langmuir model fits the adsorption data better than the Freundlich model. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
The enzymatically degradable poly(N‐isopropylacrylamide‐co‐acrylic acid) hydrogels were prepared using 4,4‐bis(methacryloylamino)azobenzene (BMAAB) as the crosslinker. It was found that the incorporated N‐isopropylacrylamide (NIPAAm) monomer did not change the enzymatic degradation of hydrogel, but remarkably enhanced the loading of protein drug. The hydrogels exhibited a phase transition temperature between 4°C (refrigerator temperature) and 37°C (human body temperature). Bovine serum albumin (BSA) as a model drug was loaded into the hydrogels by soaking the gels in a pH 7.4 buffer solution at 4°C, where the hydrogel was in a swollen status. The high swelling of hydrogels at 4°C enhanced the loading of BSA (loading capability, ca. 144.5 mg BSA/g gel). The drug was released gradually in the pH 7.4 buffer solution at 37°C, where the hydrogel was in a shrunken state. In contrast, the enzymatic degradation of hydrogels resulted in complete release of BSA in pH 7.4 buffer solution containing the cecal suspension at 37°C (cumulative release: ca. 100 mg BSA/g gel after 4 days). Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
Poly(N‐acryloyl‐N′‐ethyl piperazine‐co‐N‐isopropylacrylamide) hydrogels were prepared by thermal free‐radical copolymerization of N‐acryloyl‐N′‐ethyl piperazine (AcrNEP) and N‐isopropylacrylamide (NIPAM) in solution using N, N′‐methylene bisacrylamide as the crosslinking agent. The gels were responsive to changes in external stimuli such as pH and temperature. The pH and temperature responsive character of the gels was greatly dependent on the monomer content, namely AcrNEP and NIPAM, respectively. The gels swelled in acidic (pH 2) and de‐swelled in basic (pH 10) solutions with a response time of 60 min. With increase in temperature from 23 to 80 °C the swelling of the gels decreased continuously and this effect was different in acidic and basic solutions. The temperature dependence of equilibrium water content of the gels was evaluated by the Gibbs–Helmholtz equation. Detailed analysis of the swelling properties of these new gels in relation to molecular heterogeneity in acidic (pH 2) and basic (pH 10) solutions were performed. Water transport property of the gels was studied gravimetrically. In acidic solution, the diffusion process was non‐Fickian (anomalous) while in basic solution, the diffusion was quasi‐Fickian. The effect was more evident in solution of pH 2 than in pH 10. Various structural parameters of the gels such as number‐average molar mass between crosslink (Mc), the crosslink density (ρc), and the mesh size (ξ) were evaluated. The mesh sizes of the hydrogels were between 64 and 783 Å in the swollen state in acidic solution and 20 and 195 Å in the collapsed state in basic solution. The mesh size increased between three to four times during the pH‐dependent swelling process. The amount of unbound water (free water) and bound water of the gels was also evaluated using differential scanning calorimetry. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

16.
A novel thermosensitive poly(N-vinylisobutyramide)(polyNVIBA) hydrogel was prepared by the copolymerization of N-vinylisobutyramide (NVIBA) with butylene-bis-NVA(B-BNVA) as a crosslinker in a high yield. The swelling transition behavior was examined in comparison with poly(N-isopropylacrylamide)(polyNIPAAm) hydrogel. The resulting polyNVIBA hydrogel clearly showed a swelling transion in water at ca. 41°C. To control the transition temperature (Tt) of the gel, crosslinked copolymers of NVIBA and N-vinylacetamide (NVA) were prepared and compared with copolymers of N-isopropylacrylamide(NIPAAm) and NVA. The incorporation of NVA led to a higher swelling transition temperature. Tt of poly(NVIBA-co-NVA) gels was almost the same as those in water-soluble poly(NVIBA-co-NVA). The responses for a swelling transition of polyNVIBA and poly(NVIBA-co-NVA) gels were sharp in comparison to polyNIPAAm gels. PolyNVIBA and poly(NVIBA-co-NVA) gels desorbed 98% of water above Tt. The characteristic and the mechanism of the phase transition on the hydrogels were discussed. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 3377–3384, 1997  相似文献   

17.
Interpenetrating polymer network (IPN) hydrogels have been fabricated through a facile one‐pot approach from tetra/bifunctional telechelic macromonomers with epoxy, amine, azide, and alkyne groups by orthogonal double click reactions: epoxy‐amine reaction and copper‐catalyzed azide‐alkyne cycloaddition. Both the crosslinked networks are simultaneously constructed in water from the biocompatible poly (ethylene glycol)‐based macromonomers. The crosslinking density of each network was finely tuned by the macromonomer structure, permitting control of network molecular weights between crosslinks of the final gels. Compared to corresponding single network gels, the IPN gels containing both tightly and loosely crosslinked networks exhibited superior mechanical properties with shear moduli above 15 kPa and fracture stresses over 40 MPa. The synthetic versatility of this one‐pot approach will further establish design principles for the next generation of robust hydrogel materials. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1459–1467  相似文献   

18.
Novel poly(methacrylamide‐co‐2‐acrylamido‐2‐methyl‐ 1‐propanesulfonic acid) (poly(MAAm‐co‐AMPS)) hydrogels were synthesized by free radical polymerization of methacrylamide (MAAm) and 2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid (AMPS) in deionized water at 60 °C by using ammonium peroxydisulfate (APS), N,N′‐methylenebisacrylamide (MBAAm) and N,N,N′,N′‐tetramethylethylenediamine (TEMED) as initiator, crosslinker, and activator, respectively. To investigate the effects of feed content on the pH‐ and temperature‐dependent swelling behavior of poly(MAAm‐co‐AMPS), molar ratio of MAAm to AMPS in feed was varied from 90/10 to 10/90. Structural characterization of gels was performed by Fourier transform infrared (FTIR) spectroscopy using attenuated total reflectance (ATR) technique. Thermal and morphological characterizations of gels were performed by thermogravimetric analysis (TGA) and scanning electron microscopy (SEM), respectively. Although an apparent pH‐sensitivity was not observed for the poly(MAAm‐co‐AMPS) gels during the swelling in different buffer solutions, their temperature‐sensitivity became more evident with the increase in AMPS content of copolymer. Thermal stability of poly(MAAm‐co‐AMPS) gels increased with MAAm content. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

19.
In this study, we immobilized enzymes by combining covalent surface immobilization and hydrogel entrapment. A model enzyme, glucose oxidase (GOX), was first covalently immobilized on the surface of silica nanoparticles (SNPs) via 3‐aminopropyltriethoxysilane (APTES), and the resultant SNP‐immobilized enzyme was physically entrapped within photopolymerized hydrogels prepared from two different molecular weights (MWs) (575 and 8000 Da) of poly(ethylene glycol)(PEG). The hydrogel entrapment resulted in a decrease in reaction rate and an increase in apparent Km of SNP‐immobilized GOX, but these negative effects could be minimized by using hydrogel with a higher MW PEG, which provides higher water content and larger mesh size. The catalytic rate of the PEG 8000 hydrogel was about ten times faster than that of the PEG 575 hydrogel because of enhanced mass transfer. Long‐term stability test demonstrated that SNP‐immobilized GOX entrapped within hydrogel maintained more than 60% of its initial activity after a week, whereas non‐entrapped SNP‐immobilized GOX and entrapped GOX without SNP immobilization maintained less than 20% of their initial activity. Incorporation of SNPs into hydrogel enhanced the mechanical strength of the hydrogel six‐fold relative to bare hydrogels. Finally, a hydrogel microarray entrapping SNP‐immobilized GOX was fabricated using photolithography and successfully used for quantitative glucose detection. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Aqueous gel deswelling rates for copolymer hydrogels comprising N‐isopropylacrylamide (IPAAm) and 2‐carboxyisopropylacrylamide (CIPAAm) in response to increasing temperatures were investigated. Compared with pure IPAAm‐based gels, IPAAm–CIPAAm gels shrink very rapidly in response to small temperature increases across their lower critical solution temperature (their volume is reduced by five‐sixths within 60 s). Shrinking rates for these hydrogels increase with increasing CIPAAm content. In contrast, structurally analogous IPAAm–acrylic acid (AAc) copolymer gels lose their temperature sensitivity with the introduction of only a few mole percent of AAc. Additionally, deswelling rates of IPAAm–AAc gels decrease with increasing AAc content. These results indicate that IPAAm–CIPAAm copolymer gels behave distinctly from IPAAm–AAc systems even if both comonomers, CIPAAm and AAc, possess carboxylic acid groups. Thus, we propose that the sensitive deswelling behavior for IPAAm–CIPAAm gels results from strong hydrophobic chain aggregation maintained between network polymer chains due to the similar chemical structures of CIPAAm and IPAAm. This structural homology facilitates aggregation of chain isopropylamide groups for both IPAAm and CIPAAm sequences with increasing temperature. The incorporation of AAc, however, shows no structural homology to IPAAm, inhibiting chain aggregation and limiting collapse. A functionalized temperature‐sensitive poly(N‐isopropylacrylamide) hydrogel containing carboxylic acid groups is possible with CIPAAm, producing rapid and large volume changes in response to smaller temperature changes. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 335–342, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号