首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
《中国化学会会志》2017,64(5):522-530
In this study, we report the substituent effect on the structures, frontier orbital analysis, and spectroscopic properties (IR , 13C , 29Si NMR ) in the molybdenum silylidyne complexes CpMo (CO )2(≡Si‐para ‐C6H4X ) (X = H, F, Cl, CN , NO2 , Me, OMe , NH2 , NHMe ) using MPW1PW91 quantum chemical calculations. The calculated structural parameters and spectral parameters are compatible with the experimental values in similar complexes. The nature of the chemical bond between the [Cp(OC ) 2Mo ] and [Si‐para ‐C6H4X ]+ fragments was explored with energy decomposition analysis (EDA ). The percentage composition in terms of the defined groups of frontier orbitals for CpMo (CO )2(≡Si‐para ‐C6H4X ) complexes was investigated to explore the character of the metal–ligand bonds. The linear correlations between the properties and Hammett constants (σ p) were illustrated. Natural bond orbital analysis (NBO ) was used to illustrate the electronic structure of the complexes.  相似文献   

2.
The reaction of di(alkyn‐1‐yl)vinylsilanes R1(H2C═CH)Si(C≡C―R)2 (R1 = Me ( 1 ), Ph ( 2 ); R = Bu (a), Ph (b), Me2HSi (c)) at 25°C with 1 equiv. of 9‐borabicyclo[3.3.1]nonane (9‐BBN) affords 1‐silacyclopent‐2‐ene derivatives ( 3a , 3b , 3c , 4a , 4b ), bearing one Si―C≡C―R function readily available for further transformations. These compounds are formed by consecutive 1,2‐hydroboration followed by intramolecular 1,1‐carboboration. Treated with a further equivalent of 9‐BBN in benzene they are converted at relatively high temperature (80–100°C) into 1‐alkenyl‐1‐silacyclopent‐2‐ene derivatives ( 5a , 5b 6a , 6b ) as a result of 1,2‐hydroboration of the Si―C≡C―R function. Protodeborylation of the 9‐BBN‐substituted 1‐silacyclopent‐2‐ene derivatives 3 , 4 , 5 , 6 , using acetic acid in excess, proceeds smoothly to give the novel 1‐silacyclopent‐2‐ene ( 7 , 8 , 9 , 10 ). The solution‐state structural assignment of all new compounds, i.e. di(alkyn‐1‐yl)vinylsilanes and 1‐silacyclopent‐2‐ene derivatives, was carried out using multinuclear magnetic resonance techniques (1H, 13C, 11B, 29Si NMR). The gas phase structures of some examples were calculated and optimized by density functional theory methods (B3LYP/6‐311+G/(d,p) level of theory), and 29Si NMR parameters were calculated (chemical shifts δ29Si and coupling constants nJ(29Si,13C)). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
A scalable and versatile methodology for production of vinylated carboxylic compounds with 13C isotopic label in C1 position is described. It allowed synthesis of vinyl acetate‐1‐13C, which is a precursor for preparation of 13C hyperpolarized ethyl acetate‐1‐13C, which provides a convenient vehicle for potential in vivo delivery of hyperpolarized acetate to probe metabolism in living organisms. Kinetics of vinyl acetate molecular hydrogenation and polarization transfer from para‐hydrogen to 13C via magnetic field cycling were investigated. Nascent proton nuclear spin polarization (%PH) of ca. 3.3 % and carbon‐13 polarization (%P13C) of ca. 1.8 % were achieved in ethyl acetate utilizing 50 % para‐hydrogen corresponding to ca. 50 % polarization transfer efficiency. The use of nearly 100% para‐hydrogen and the improvements of %PH of para‐hydrogen‐nascent protons may enable production of 13C hyperpolarized contrast agents with %P13C of 20–50 % in seconds using this chemistry.  相似文献   

4.
Substituent‐induced electroluminescence polymers—poly[2‐(2‐dimethyldodecylsilylphenyl)‐1,4‐phenylenevinylene] [(o‐R3Si)PhPPV], poly[2‐(3‐dimethyldodecylsilylphenyl)‐1,4‐phenylenevinylene] [(m‐R3Si)PhPPV], and poly[2‐(4‐dimethyldodecylsilylphenyl)‐1,4‐phenylenevinylene] [(p‐R3Si)PhPPV]—were synthesized according to the Gilch polymerization method. The band gap and spectroscopic data were tuned by the dimethyldodecylsilyl substituent being changed from the ortho position to the para position in the phenyl side group along the polymer backbone. The weight‐average molecular weights and polydispersities were 8.0–96 × 104 and 3.0–3.4, respectively. The maximum photoluminescence wavelengths for (o‐R3Si)PhPPV, (m‐R3Si)PhPPV, and (p‐R3Si)PhPPV appeared around 500–530 nm in the green emission region. Double‐layer light‐emitting diodes with an indium tin oxide/poly(3,4‐ethylenedioxythiophene)/polymer/Al configuration were fabricated with these polymers. The turn‐on voltages and the maximum brightness of (o‐R3Si)PhPPV, (m‐R3Si)PhPPV, and (p‐R3Si)PhPPV were 6.5–8.7 V and 1986–5895 cd/m2, respectively. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2347–2355, 2004  相似文献   

5.
N‐(trialkoxysilylalkyl) derivatives of 1,2,3,4‐tetrahydroquinoline, 1,2,3,4‐tetrahydroisoquinoline and 4,4‐dimethyl‐4‐sila‐1,2,3,4‐tetrahydroisoquinoline were prepared and characterized by elemental analysis, 1H, 13C and 29Si NMR spectroscopy. In vivo psychotropic properties and in vitro cytotoxic effects of 3‐[N‐(1,2,3,4‐tetrahydroisoquinolyl)]propyltriethoxysilane methiodide and 3‐[N‐(1,2,3,4‐tetrahydroisoquinolyl)]propylsilatrane are reported. Comparative study of 29Si shifts in newly synthesized compounds suggested donor–acceptor interaction between nitrogen and silicon atom, which increased electron density at Si nuclei, revealing a stronger increment of N → Si transannular bond in comparison with N → Si α‐effect. The molecular structure of 3‐[N‐(1,2,3,4‐tetrahydroisoquinolyl)]propylsilatrane features a penta‐coordinate silicon atom having CSiO3 pattern and Si…N intramolecular interaction. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
Absolute values of (79) geminal 2J(29Si‐O‐29Si) couplings were measured in an extensive series of (55) unstrained siloxanes dissolved in chloroform‐d. Signs of 2J(29Si‐O‐29Si) in some (9) silicon hydrides were determined relative to 1J(29Si‐1H) which are known to be negative. It is supposed that positive sign of the 2J(29Si‐O‐29Si) coupling found in all studied hydrides is common to all siloxanes. Theoretical calculations for simple model compounds failed to reproduce this sign and so their predictions of bond length and angle dependences cannot be taken as reliable. Useful empirical correlations were found between the 2J(29Si‐O‐29Si) couplings on one side and the total number m of oxygen atoms bonded to the silicon atoms, sum of 29Si chemical shifts or product of 1J(29Si‐13C) couplings on the other side. The significance of these correlations is briefly discussed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Trialkynyl(vinyl)silanes CH2?CH? Si(C?C? R)3 (R = Bu, Ph, p‐tolyl) were prepared and treated with 9‐borabicyclo[3.3.1]nonane (9‐BBN). Consecutive 1,2‐hydroboration and intramolecular 1,1‐carboboration reactions (each requires different reaction conditions) were studied. 1,2‐Hydroboration of the Si? vinyl group takes place at ambient temperature (23°C in tetrahydrofuran), followed by intramolecular 1,1‐vinylboration to give 1‐silacyclopent‐2‐ene derivatives, bearing still two alkynyl functions at the silicon atom. Further treatment with a second equivalent of 9‐BBN affords 1‐alkenyl‐1‐(alkynyl)‐1‐silacyclopent‐2‐ene derivatives. These undergo intramolecular 1,1‐vinylboration to give 4‐silaspiro[3.4]octa‐1,5‐dienes bearing the boryl groups at 2 and 6 positions. Protodeborylation of all new compounds (intermediates and final products) using acetic acid in slight excess afforded corresponding silanes including spirosilanes. All compounds were characterized using multinuclear NMR spectroscopy (1H, 11B, 13C, 29Si) in solution state. Solid‐state structures for one of the trialkynyl(vinyl)silanes (R = p‐tolyl) and one of the 1‐silacyclopent‐2‐ene derivatives (R = Ph) were confirmed using X‐ray diffraction. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
29Si NMR spectra of 29 Si‐alkylsubstituted derivatives of 1,3,5‐trisilacyclohexanes have been recorded and analyzed. A systematic preparation of alkyl derivatives with mixed substituents made it possible to evaluate substituent‐induced chemical shift (SCS) values for the ring silicon atoms in α and γ position. It is found that the equatorial α‐effect increases in the order Me < Et < i‐Pr < t‐Bu. For the alkyl groups Me, Et, and i‐Pr the axial α‐effect is similar in magnitude to the αe‐effect. Axial SCS values for the t‐Bu group are not accessible because chair conformations with an axial t‐Bu group are energetically unfavourable and escape into a twisted boat form. The observed γ‐effects exhibit the γgauche‐effect for axial substituents as known from compounds with a pure carbon framework.  相似文献   

9.
Zeolites of type USY (ultra‐stable Y) were obtained by steaming of NH4NaY modification. Samples were modified by subsequent alkaline treatment in KOH solution. USY and USY‐KOH were characterised by chemical element analysis, XRD, IR, 29Al and 29Si MAS NMR spectroscopic measurements. Correct silicon to aluminium ratios (Si/Al) were determined by XRD and IR (double ring vibration wDR) data whereas values calculated according to data of 29Si MAS NMR and IR spectroscopy (asymmetrical TOT valence vibration wTOT) appeared to be too high., In the latter case, the signals of the zeolite framework were strongly superimposed by that of extra‐framework silica gel (EFSi) formed during steaming. It was found that alkaline leaching induces desilication of silicon‐rich area of the zeolite framework and partial dissolution of EFSi. Silicate ions of both react with likewise dissolved extra‐framework aluminium (EFAl) to form X‐ray amorphous aluminosilicate. Consequently, the superposition of the 29Si MAS NMR signals of the zeolite framework by silica gel was reduced for Q4(0Al) but increased for Q4 (2Al) and Q4(3Al) structure units. A reinsertion of EFAl into the zeolite framework has not been observed.  相似文献   

10.
29Si NMR shielding tensors of a series of triphenylsilanes Ph3SiR with R = Ph, Me, F, Cl, Br, OH, OMe, SH, NH2, SiPh3, C≡CPh were determined from 29Si CP/MAS spectra recorded at low spinning rates. In addition the principal components of the shielding tensor were calculated employing the DFT‐IGLO method. For most silanes experimental and calculated values are in good accordance. Larger differences were observed for systems with hydrogen bridge forming substituents and the halides bromide and chloride. In some of the spectra the shielding information interfered with residual dipolar couplings. The different contributions of the various substituents to the principal components of the shielding tensor and the orientation of the tensor within the molecules are discussed and compared for the compounds under investigation.  相似文献   

11.
A series of phenyl modified polydimethylsiloxane (PDMS) / polyhydrogenmethylsiloxane (PHMS) random copolymers containing both internal Si‐H and terminal SiH2 and T (MeSiO3/2) units was synthesized in one step through n‐BuLi‐catalyzed ring‐opening polymerization of cyclic comonomers and characterized by GPC, IR and 1H and 29Si NMR. Sequential microstructures of these copolymers were determined by 29Si‐NMR spectroscopy. Epoxy‐modified polysiloxanes were prepared and used as comparable standards for the assignment of the NMR spectra. A hydride‐transfer mechanism has been proposed to account for the formation of terminal Si‐H and T group. Detailed sequential analyses and chemical shifts of 29Si‐NMR for various siloxane units are reported for the first time.  相似文献   

12.
The reactions of bis(trimethylstannyl)ethyne, Me3Sn–C?C–SnMe3 ( 4 ), with trimethylsilyl‐ or dimethylsilyl‐dialkylboryl‐substituted alkenes 1 – 3 afford organometallic‐substituted allenes 5 , 6 and 8 , 9 in high yield. In the case of (E)‐2‐trimethylsilyl‐3‐diethylboryl‐2‐pentene ( 1) , a butadiene derivative 7 could be detected as an intermediate prior to rearrangement into the allene. All reactions were monitored by 29Si and 119Sn NMR, and the products were characterized by an extensive NMR data set (1H, 11B, 13C, 29Si, 119Sn NMR). Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
The reactions of the 1,2‐diselenolato‐1,2‐dicarba‐closo‐dodecaborane(12) dianion 1 with diorganoelement(IV) dichlorides (Ph2CCl2, Me2SiCl2, Ph2SiCl2, Me2SnCl2, Ph2SnCl2) gave novel five‐member heterocycles along with other products. The molecular structures of the five‐member rings containing CPh2 ( 2 ) and SnPh2 ( 9 ) moieties between the selenium atoms were determined by X‐ray analyses. In the case of the chlorosilanes, the analogous five‐member ring containing the SiPh2 unit ( 4 ) could be identified in mixtures. The expected reaction was accompanied by rearrangement leading to formation of another five‐member ring 6 containing the Ph2Si? Se? Se moiety. Oxidative addition of the five‐member heterocycles containing tin ( 7, 9 ) to ethene‐bis(triphenylphosphane)platinum(0) gave at low temperature the bis(triphenylphosphane)platinum(II) complexes 12 and 13 , where the Pt(PPh3)2 fragment had been inserted into one of the Sn? Se bonds. Extensive decomposition of these complexes was observed above ? 20 °C. The proposed solution‐state structures of the new compounds are supported by multinuclear magnetic resonance data (1H, 11B, 13C, 29Si, 31P, 77Se, 119Sn and 195Pt NMR). Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
The vacuum‐UV (VUV)‐induced conversion of commercially available poly(1,1‐dimethylsilazane‐co‐1‐methylsilazane) into methyl‐Si‐O‐Si networks was studied using UV sources at wavelengths around 172, 185, and 222 nm, respectively. Time‐of‐flight secondary ion mass spectroscopy (TOF‐SIMS), X‐ray photo electron spectroscopy (XPS), and Fourier transform infrared (FTIR) measurements, as well as kinetic investigations, were carried out to elucidate the degradation process. First‐order kinetics were found for the photolytically induced decomposition of the Si? NH‐Si network, the subsequent formation of the methyl‐Si‐O‐Si network and the concomitant degradation of the Si? CH3 bond, which were additionally independent of the photon energy above a threshold of about 5.5 eV (225 nm). The kinetics of these processes were, however, dependent on the dose actually absorbed by the layer and, in the case of Si‐O‐Si formation, additionally on the oxygen concentration. The release of ammonia and methane accompanied the conversion process. Quantum‐chemical calculations on methyl substituted cyclotetrasilazanes as model compounds substantiate the suggested reaction scheme. Layers <100 nm in thickness based on mixtures of poly(1,1‐dimethylsilazane‐co‐1‐methylsilazane) and perhydropolysilazane (PHPS) were coated onto polyethylene terephthalate (PET) foils by a continuous roll to roll process and cured by VUV irradiation by using wavelengths <200 nm and investigated for their O2 and water vapor‐barrier properties. It was found that the resulting layers displayed oxygen and water vapor transmission rates (OTR and WVTR, respectively) of <1 cm3 m?2 d?1 bar?1 and <4 g m?2 d?1, respectively.  相似文献   

15.
Deprotonation of aminophosphaalkenes (RMe2Si)2C?PN(H)(R′) (R=Me, iPr; R′=tBu, 1‐adamantyl (1‐Ada), 2,4,6‐tBu3C6H2 (Mes*)) followed by reactions of the corresponding Li salts Li[(RMe2Si)2C?P(M)(R′)] with one equivalent of the corresponding P‐chlorophosphaalkenes (RMe2Si)2C?PCl provides bisphosphaalkenes (2,4‐diphospha‐3‐azapentadienes) [(RMe2Si)2C?P]2NR′. The thermally unstable tert‐butyliminobisphosphaalkene [(Me3Si)2C?P]2NtBu ( 4 a ) undergoes isomerisation reactions by Me3Si‐group migration that lead to mixtures of four‐membered heterocyles, but in the presence of an excess amount of (Me3Si)2C?PCl, 4 a furnishes an azatriphosphabicyclohexene C3(SiMe3)5P3NtBu ( 5 ) that gave red single crystals. Compound 5 contains a diphosphirane ring condensed with an azatriphospholene system that exhibits an endocylic P?C double bond and an exocyclic ylidic P(+)? C(?)(SiMe3)2 unit. Using the bulkier iPrMe2Si substituents at three‐coordinated carbon leads to slightly enhanced thermal stability of 2,4‐diphospha‐3‐azapentadienes [(iPrMe2Si)2C?P]2NR′ (R′=tBu: 4 b ; R′=1‐Ada: 8 ). According to a low‐temperature crystal‐structure determination, 8 adopts a non‐planar structure with two distinctly differently oriented P?C sites, but 31P NMR spectra in solution exhibit singlet signals. 31P NMR spectra also reveal that bulky Mes* groups (Mes*=2,4,6‐tBu3C6H2) at the central imino function lead to mixtures of symmetric and unsymmetric rotamers, thus implying hindered rotation around the P? N bonds in persistent compounds [(RMe2Si)2C?P]2NMes* ( 11 a , 11 b ). DFT calculations for the parent molecule [(H3Si)2C?P]2NCH3 suggest that the non‐planar distortion of compound 8 will have steric grounds.  相似文献   

16.
2,3‐Dimethylpentacene (DMP) and 2,3‐dimethyltetracene (DMT) were synthesized, characterized and employed as the channel material in the fabrication of thin‐film transistors. The two methyl groups increase the chemical stability of the compounds versus the pristine acene analogues. The crystals maintain herringbone‐like molecular packing, whereas the weak dipole associated with the unsymmetrical molecule induces an anti‐parallel alignment among the neighbors. This structural motif favors layered film growth on SiO2/Si surface. Thin film transistors prepared on SiO2/Si and n‐nonyltrichlorosilane‐modified SiO2/Si at different substrate temperatures were compared. DMP‐based transistors prepared on rubbed n‐nonyltrichlorosilane‐modified SiO2/Si substrate gave the highest field‐effect mobility of 0.46 cm2/Vs, whereas DMT‐based transistor gave a mobility of 0.028 cm2/Vs.  相似文献   

17.
Al‐ and Ga‐containing open‐Dawson polyoxometalates (POMs), K10[{Al4(μ‐OH)6}{α,α‐Si2W18O66}] · 28.5H2O ( Al4 ‐ open ) and K10[{Ga4(μ‐OH)6}(α,α‐Si2W18O66)] · 25H2O ( Ga4 ‐ open ) were synthesized by the reaction of trilacunary Keggin POM, [A‐α‐SiW9O34]10–, with Al(NO3)3 · 9H2O or Ga(NO3)3 · nH2O, and unequivocally characterized by single‐crystal X‐ray analysis, 29Si and 183W NMR, and FT‐IR spectroscopy as well as elemental analysis and TG/DTA. Single‐crystal X‐ray analysis revealed that the {M4(μ‐OH)6}6+ (M = Al, Ga) clusters were included in an open pocket of the open‐Dawson polyanion, [α,α‐Si2W18O66]16–, which was constituted by the fusion of two trilacunary Keggin POMs via two W–O–W bonds. These two open‐Dawson structural POMs showed clear difference of the bite angles depending on the size of ionic radii. In cases of both compounds, the solution 29Si and 183W NMR spectra in D2O showed only one signal and five signals, respectively. These spectra were consistent with the molecular structures of Al4 ‐ and Ga4 ‐ open , suggesting that these polyoxoanions were obtained as single species and maintained their molecular structures in solution.  相似文献   

18.
The purpose of this systematic experimental and theoretical study is to deeply understand the unique bonding situation in ferrocene‐stabilized silylium ions as a function of the substituents at the silicon atom and to learn about the structure parameters that determine the 29Si NMR chemical shift and electrophilicity of these strong Lewis acids. For this, ten new members of the family of ferrocene‐stabilized silicon cations were prepared by a hydride abstraction reaction from silanes with the trityl cation and characterized by multinuclear 1H and 29Si NMR spectroscopy. A closer look at the NMR spectra revealed that additional minor sets of signals were not impurities but silylium ions with substitution patterns different from that of the initially formed cation. Careful assignment of these signals furnished experimental proof that sterically less hindered silylium ions are capable of exchanging substituents with unreacted silane precursors. Density functional theory calculations provided mechanistic insight into that substituent transfer in which the migrating group is exchanged between two silicon fragments in a concerted process involving a ferrocene‐bridged intermediate. Moreover, the quantum‐chemical analysis of the 29Si NMR chemical shifts revealed a linear relationship between δ(29Si) values and the Fe???Si distance for subsets of silicon cations. An electron localization function and electron localizability indicator analysis shows a three‐center two‐electron bonding attractor between the iron, silicon, and C′ipso atoms, clearly distinguishing the silicon cations from the corresponding carbenium ions and boranes. Correlations between 29Si NMR chemical shifts and Lewis acidity, evaluated in terms of fluoride ion affinities, are seen only for subsets of silylium ions, sometimes with non‐intuitive trends, indicating a complicated interplay of steric and electronic effects on the degree of the Fe???Si interaction.  相似文献   

19.
A series of N‐methyl‐N‐(2‐triorganylsiloxyethyl)‐1,2,3,4‐tetrahydro(iso)quinolinium iodides has been synthesized via dehydrocondensation reaction of N‐(2‐hydroxyethyl)‐1,2,3,4‐tetrahydroisoquinoline, N‐(2‐hydroxyethyl)‐1,2,3,4‐tetrahydroquinoline and 4,4‐dimethyl‐N‐(2‐hydroxyethyl)‐4‐sila‐1,2,3,4‐tetrahydroisoquinoline with trialkyl(aryl)hydrosilanes and subsequent alkylation, and characterized by 1H, 13C and 29Si NMR and mass spectroscopy. The biological activity data exhibited a marked enhancement of inhibitory activity against tumour cell lines and almost all the test bacterial/fungal strains in comparison with their 2‐hydroxyethyl precursors. Cytotoxicity in the microgram range against HT‐1080 (human fibrosarcoma) and MG‐22A (mouse hepatoma) cancer cell lines was observed for most of compounds. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
The reagent Me3Si(C6F5) was used for the preparation of a series of perfluorinated, pentafluorophenyl‐substituted 3,6‐dihydro‐2H‐1,4‐oxazines ( 2 – 8 ), which, otherwise, would be very difficult to synthesize. Multiple pentafluorophenylation occurred not only on the heterocyclic ring of the starting compound 1 (Scheme), but also in para position of the introduced C6F5 substituent(s) leading to compounds with one to three nonafluorobiphenyl (C12F9) substituents. While the tris(pentafluorophenyl)‐substituted compound 3 could be isolated as the sole product by stoichiometric control of the reagent, the higher‐substituted compounds 5 – 8 could only be obtained as mixtures. The structures of the oligo(perfluoroaryl) compounds were confirmed by 19F‐ and 13C‐NMR, MS, and/or X‐ray crystallography. DFT simulations of the 19F‐ and 13C‐NMR chemical shifts were performed at the B3LYP‐GIAO/6‐31++G(d,p) level for geometries optimized by the B3LYP/6‐31G(d) level, a technique that proved to be very useful to accomplish full NMR assignment of these complex products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号