首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of Ni2+ doping on the magnetic and magnetocaloric properties of La0.7Ca0.3MnO3 manganites synthesized via the auto-combustion method is reported. The aim of studying Ni2+-substituted La0.7Ca0.3Mn1 ? xNixO3 (x=0,0.02,0.07, and 0.1) manganites was to explore the possibility of increasing the operating temperature range for the magnetocaloric effect through tuning of the magnetic transition temperature. X-ray diffraction analysis confirmed the phase purity of the synthesized samples. The substitution of Mn3+ ions by Ni2+ ions in the La0.7Ca0.3MnO3 lattice was also corroborated through this technique. The dependence of the magnetization on the temperature reveals that all the compositions exhibit a well-defined ferromagnetic to paramagnetic transition near the Curie temperature. A systematic decrease in the values of the Curie temperature is clearly observed upon Ni2+ doping. Probably the replacement of Mn3+ by Ni2+ ions in the La0.7Ca0.3MnO3 lattice weakens the Mn3+–O–Mn4+ double exchange interaction, which leads to a decrease in the transition temperature and the magnetic moment in the samples. By using Arrott plots, it was found that the phase transition from ferromagnetic to paramagnetic is second order. The maximum magnetic entropy changes observed for the x=0,0.02,0.07, and 0.1 composites was 0.85, 0.77, 0.63, and 0.59 J/kg?K, respectively, under a magnetic field of 1.5 T. In general, it was verified that the magnetic entropy change achieved for La0.7Ca0.3Mn1 ? xNixO3 manganites synthesized via the auto-combustion method is higher than those reported for other manganites with comparable Ni2+-doping levels synthesized via standard solid state reaction. The addition of Ni2+ increases the value of the relative cooling power as compared to that of the parent compound. The highest value of this parameter (~60 J/kg) is found for a Ni-doping level of 2% around 230 K in a field of 1.5 T.  相似文献   

2.
The crystallographic and magnetic properties of the compounds InM2+CrS4(M = Mn, Fe, Co, Ni) were studied. Three of these compounds except MnInCrS4 were antiferromagnetic. The Néel termperature and paramagnetic Curie temperature were determined to be 20 and 82K for InFeCrS4, 36 and 115K for InCoCrS4 and 22 and 26K for InNiCrS4, respectively.  相似文献   

3.
Ceramic samples of lanthanum strontium manganite perovskites La0.6Sr0.2Mn1.2 ? x Ni x O3 ± ?? (0 ?? x ?? 0.3) have been investigated using the X-ray diffraction, magnetic (??ac), 55Mn NMR, resistive, and magnetoresistive methods. The specific features of the influence of the composition on the structure and properties of nonstoichiometric manganite perovskites have been established. It has been found that the rhombohedrally (R $\bar 3$ c) distorted perovskite structure contains cation and anion vacancies, as well as nanostructured clusters with Mn2+ ions in the A-positions. The substitution of Ni3+ ions (r = 0.74 ?) for Mn3+ ions (r = 0.785 ?) leads to a decrease in the lattice parameter a, the ferromagnetic-paramagnetic phase transition temperature T C, and the metal-semiconductor phase transition temperature T ms due to the disturbance of the superexchange interactions between heterovalent manganese ions Mn3+ and Mn4+. The observed anomalous magnetic hysteresis at 77 K has been explained by the antiferromagnetic effect of the unidirectional exchange anisotropy of the ferromagnetic matrix structure on the magnetic moments of the superstoichiometric manganese Mn2+ ions located in nanostructured planar clusters. An analysis of the asymmetrically broadened 55Mn NMR spectra of the compounds has revealed a high-frequency electronic superexchange of the ions Mn3+ ? O2? ? Mn4+; a local heterogeneity of their surrounding by other ions, vacancies, and clusters; and a partial localization of Mn4+ ions. The local hyperfine interaction fields on 55Mn nuclei have been determined. The concentration dependences of the activation energy and charge hopping frequency have confirmed that the Ni ions decrease the electrical conductivity due to the weakening of the electronic superexchange Mn3+ ? O2? ? Mn4+. Two types of magnetoresistive effects have been found: one effect, which is observed near the phase transition temperatures T C and T ms, is caused by scattering at intracrystalline nanostructured heterogeneities, and the other effect, which is observed in the low-temperature range, is induced by tunneling through intercrystalline mesostructured boundaries. The phase diagram has demonstrated that there is a strong correlation between magnetic and electrical properties in rare-earth manganites.  相似文献   

4.
The magnetic properties of the La1 ? x Mn1 ? y O3 family of nonstoichiometric lanthanum manganites are studied in the 80 K < T < 640 K temperature range. The Curie temperature varies nonmonotonically with the growth in the density of Mn4+ ions. In the existence range for the paramagnetic phase, magnetic polarons appear in both the orthorhombic and rhombohedral phases. In the range of paramagnetism, the temperature dependence of the magnetic susceptibility is nonlinear and can be fitted by the Curie law with the temperature-dependent Curie constant.  相似文献   

5.
Neutron powder diffraction experiments performed on two selected compositions of the yttrium-based solid solution YNixMn1−xO3 clearly reveal a nuclear order between the Ni2+ and Mn4+ ions in the half-substituted compound YNi0.50Mn0.50O3, so that the crystal structure is no longer described in the conventional orthorhombic Pbnm space group, but in the monoclinic P21/n, all over the investigated temperature range (1.5-300 K). However, both X-rays diagrams and neutron patterns of the YNi0.25Mn0.75O3 phase are indexed in the Pbnm orthorhombic-like symmetry, indicating that the Mn and Ni ions are randomly distributed on the octahedral sites.In addition, neutron diffraction points out that the nature of the magnetic ordering is strongly connected to the structural properties. Whereas no long-range 3D-magnetic ordering was detected for the Pbnm YNi0.25Mn0.75O3 phase, the YNi0.50Mn0.50O3 compound exhibits a magnetic transition at The magnetic structure consists of two collinear Mn4+ and Ni2+ ferromagnetic layers (Fx0Fz magnetic configurations) with saturated magnetic moment values of 2.25(2) and 1.57(2) μB for Mn4+ and Ni2+, respectively, at 1.5 K.  相似文献   

6.
Fe50Mn15-xCoxNi35(x=0,1,3,5,7)alloys were prepared by arc melting under purified argon atmosphere.The ingots were homogenized at 930°C for 90h followed by water quenching.The crystal structure,magnetic properties and magnetocaloric effects of the alloys were studied by X-ray diffraction(XRD)and MPMS-7-type SQUID.The results show that all samples still maintained a single-(Fe,Ni)-type phase structure.With the increase of the content of Co,the Curie temperatures of these alloys increased and exhibited a second-order magnetic transition from ferromagnetic(FM)to paramagnetic(PM)state near Curie temperature.The maximum magnetic entropy change and the relative cooling power of Fe50Mn10Co5Ni35alloy was 2.55 J/kg·K and 181 J/kg,respectively,for an external field change of 5T.Compared with rare earth metal Gd,Fe50Mn15-xCoxNi35 series of alloys have obvious advantage in resource price;their Curie temperatures can be tuned to near room temperature,maintain a relatively large magnetic entropy change at the same time and they are a type of potential magnetic refrigeration materials near room temperature.  相似文献   

7.
NiAlxFe2−xO4 and Ni1−yMnyAl0.2Fe1.8O4 ferrites were prepared by the conventional ceramic method and were characterized by X-ray diffraction, scanning electron microscopy, and magnetic measurements. The single spinel phase was confirmed for all prepared samples. A proper explanation of data is possible if the Al3+ ions are assumed to replace Fe3+ ions in the A and B sites simultaneously for NiAlxFe2−xO4 ferrites, and if the Mn2+ ions are assumed to replace Ni2+ ions in the B sites for Ni1−yMnyAl0.2Fe1.8O4 ferrites. Microstructural factors play an important role in the magnetic behavior of Ni1−yMnyAl0.2Fe1.8O4 ferrites with large Mn2+ content.  相似文献   

8.
For the polycrystalline samples of Mn1?xCuxCr2S4 (x = 0.85, 0.90, 0.95) the magnetization was measured in the temperature range between 77 K and the Curie temperature, TC, using a magnetic balance (Faraday's method) and pulsed magnetic fields up to 2.0 T. The magnetic susceptibility was measured between TC and about 600 K. The Curie temperatures were obtained using the kink point method.In the temperature range between 4.2 and 77 K the magnetization was measured in stationary magnetic fields up to 14 T. The data indicate a noncollinear ferrimagnetic structure. The compounds under investigation can be treated as CuCr2S4 slightly doped with Mn, with a valence distribution Mn2+1?xCu1+xCr3+2?xCr4+xS2?4.  相似文献   

9.
A series of M-type strontium hexaferrite powders with substitution of Mn2+, Ni2+ and Ti4+ ions for Fe3+ ions according to the formula SrFe9(Mn0.5−xNixTi0.5)3O19, where x ranges from 0 to 0.5 with a step of 0.1, has been prepared via the conventional ceramic method. In order to get nanoparticles, the obtained powders were milled in a high energy SPEX mill for 1 h. XRD investigations of the unmilled and milled powders show that the prepared samples are all single phase hexaferrite. Lattice parameters and mean crystallite sizes of the powders were determined from the XRD data and Scherrer’s formula. Transmission electron microscope (TEM) was used to analyze their structures. Room temperature magnetizations and coercivities of the samples in a magnetic field of 15 kOe have been determined from the hysteresis loops. It was found that magnetizations of the milled samples were smaller than the magnetization of the unmilled samples. This decrease, based on core-shell model, has been attributed to the presence of a magnetically dead layer on the particles’ surface of the milled powders. In addition, the magnetizations of the milled samples decrease with the increase in x value. This decrease has been discussed according to site occupation of the substituted cations on the sublattices. The discussion also supports the increase of lattice parameters and the decrease of Curie temperature as x increases.  相似文献   

10.
The layered LiNi0.5Mn0.47Al0.03O2 was synthesized by wet chemical method and characterized by X-ray diffraction and analysis of magnetic measurements. The powders adopted the α-NaFeO2 structure. This substitution of Al for Mn promotes the formation of Li(Ni0.472+Ni0.033+Mn0.474+Al0.033+)O2 structures and induces an increase in the average oxidation state of Ni, thereby leading to the shrinkage of the lattice unit cell. The concentration of antisite defects in which Ni2+ occupies the (3a) Li lattice sites in the Wyckoff notation has been estimated from the ferromagnetic Ni2+(3a)–Mn4+(3b) pairing observed below 140 K. The substitution of 3% Al for Mn reduces the amount of antisite defects from 7% to 6.4–6.5%. The analysis of the magnetic properties in the paramagnetic phase in the framework of the Curie–Weiss law agrees well with the combination of Ni2+ (S = 1), Ni3+ (S = 1/2) and Mn4+ (S = 3/2) spin-only values. Delithiation has been made by the use of K2S2O8. According to this process, known to be softer than the electrochemical one, the nickel ions in the (3b) sites are converted into Ni4+ in the high spin configuration, while Ni2+(3a)–Mn4+(3b) ferromagnetic pairs remain, as the Li+(3b) ions linked to the Ni2+(3a) ions in the antisite defects are not removed. The results show that the antisite defect is surrounded by Mn4+ ions, implying the nonuniform distribution of the cations in agreement with previous NMR and neutron experiments.  相似文献   

11.
The defect (Mn2+,Ni2+,Fe2+) induced magnon gap modes in the layered antiferromagnets K2CoF4 and Rb2CoF4 were investigated with the methods of FIR absorption-and IR emission spectroscopy. The anisotropic exchange-parameters describing the strongly localized Mn2+ spin excitations far below the host lattice magnon band and the Ni2+ excitations in the vacinity of this band are presented. In the diluted system K2Co1-cMncF4 localized Mn2+ cluster modes up to about C≈0.1 were observed. The excitation energy of these modes can only be explained by assuming an anisotropic Mn2+-Mn2+ exchange which is in contrast to the pure isomorphous system K2MnF4. In the spin mismatch system K2CoF4: Fe the magnetic moments of the isolated Fe2+ impurities are pulled from the plane perpendicular to the c-axis and aligned parallel to the easy axis of the magnetic crystal.  相似文献   

12.
郝延明  赵淼  傅斌  王琳  严达利 《物理学报》2006,55(9):4906-4911
通过X射线衍射及磁测量手段研究了Er2AlFe16-xMnx(x=1,2,3,4,6,8)化合物的结构和磁性. 研究结果表明Er2AlFe16-xMnx化合物具有六角相的Th2Ni17型结构. 采用X射线热膨胀测定法在103—654K的温度范围内测量了Er2AlFe16-xMnx(x=1,2,3,4)化合物的热膨胀性质,发现这些化合物在低温下存在热膨胀反常现象,在居里点附近具有负膨胀性质. 对自发磁致伸缩的研究结果表明Er2AlFe16-xMnx化合物中存在着较强的各向异性的自发磁致伸缩,低温下自旋重取向的出现使得化合物的自发体磁致伸缩有所增强. 磁测量结果表明Mn的替代导致Er2AlFe16-xMnx化合物的居里温度及自发磁化强度急剧下降,并且使得化合物的磁晶各向异性发生显著改变. 关键词: 2AlFe16-xMnx化合物')" href="#">Er2AlFe16-xMnx化合物 反常热膨胀 自发磁致伸缩  相似文献   

13.
Fe50Ni37Mn13, which is a ferromagnetic alloy with FCC crystal structure, has been reported to show the Invar effect below the Curie temperature; however, this alloy shows a typical anti-Invar effect above the Curie temperature. In this paper, we discuss the pressure dependence of the temperature variation of the alternative current (AC) susceptibility at a frequency of 1 kHz for Fe50Ni37Mn13 at various pressures up to 7.5 GPa above 77 K; we then compare the results with those for Fe68.1Ni31.9, which were obtained in a previous study. Fe50Ni37Mn13 was in a ferromagnetic state throughout the entire pressure range measured. TC decreases in inverse proportion to the increasing pressure; dTC/dp and dln TC/dp for Fe50Ni37Mn13 are −26 K GPa−1 and −0.07 GPa−1, respectively. Further, the temperature variation of the shape of the χ′-T curve for different pressures indicates continuous combining of magnetic interactions occurs at high pressures. These results are similar to those obtained for Fe68.1Ni31.9.  相似文献   

14.
Polycrystalline Ni0.65−xCdxZn0.35Fe2O4 ferrites with x varying from 0.00 to 0.20 in steps of 0.04 have been prepared by conventional ceramic route. Calcination and sintering of samples were performed at 950 and 1250 °C for 4 and 2 h, respectively. The prepared samples were characterized by powder X-ray diffraction. The observed modifications in structure and increase in lattice constant are attributed to the difference in ionic radius of substituted Cd2+ ion and displaced Ni2+ ion. The room temperature specific saturation magnetization and Curie temperature are observed to decrease continuously with decrease in cadmium content and are attributed to the decline of A-B exchange interaction. The monotonic increase in initial permeability and decrease in magnetic loss are observed with cadmium concentration. An increase in dc electrical resistivity is observed up to x=0.12 of cadmium followed by a continuous decrease. The variation of electrical resistivity with temperature was measured in the temperature range of RT-140 °C and the corresponding activation energies for conduction obtained from the log ρ vs 1/T graphs.  相似文献   

15.
The samples with the Mn3+/Mn4+ ratio fixed at 2:1 La(2+x)/3Sr(1−x)/3Mn1−xCrxO3 (0≤x≤0.20) have been prepared. The magnetic, electrical transport, and magnetoresistance properties have been investigated. Remarkable transport and colossal magnetoresistance (CMR) effect, as well as cluster glass (CG) behaviors have been clearly observed in the samples studied. It was found that the Curie temperature Tc and insulator−metal transition temperature Tp1 are strongly affected by Cr substitution. The experiment observations are discussed by taking into account the variety of tolerance factors t; the effects of A-site radius 〈rA〉 and the A-site mismatch effect (σ2).  相似文献   

16.
The magnetic behavior of Ni2+xMn1−xAl alloys around the stoichiometric 2:1:1 composition was investigated with several experimental techniques. The results of low-temperature magnetization measurements indicate that a competition mechanism between ferromagnetism and antiferromagnetism is expected in off-stoichiometric alloys. Although the Curie temperature is strongly dependent on the composition, the saturation magnetization has an unsystematic variation for deviations from the stoichiometric Ni2MnAl alloy. A reentrant-spin-glass behavior is observed below 50 K.  相似文献   

17.
The magnetic interactions in the quasi-one-dimensional complex oxides Ba6NiMn4O15, Ba6Ni2Mn3O15, and Ba6Ni3Mn2O15 have been investigated using electron paramagnetic resonance and magnetic susceptibility measurements. It has been revealed that, for the Ba6Ni2Mn3O15 and Ba6Ni3Mn2O15 compounds, the magnetic moments are considerably smaller than the theoretical values and depend on the temperature. The results obtained have been interpreted under the assumption that the structure contains Ni3+ ions in which the energy level structure can lead to the above anomalies.  相似文献   

18.
The pressure derivative of the Curie temperature dTc/dp of the Heusler alloys Ni2MnZ(Z = Al, Ga, In, Sn and Sb) has been obtained from the results of temperature dependence of initial permeability under pressure up to about 6 kbar. For all alloys the Curie temperatures increase linearly with increasing pressure at the rate of dTc/dp: +0.7 K/kbar for Ni2MnAl, +1.0 K/kbar for Ni2MnGa, +0.9 K/kbar for Ni2MnIn, +1.4 K/kbar for Ni2MnSn and +4.1 K/kbar for Ni2MnSb. On the basis of these results, the interatomic dependence of the exchange interaction for Heusler alloys is discussed. The magnetic susceptibilities of those alloys are also reported.  相似文献   

19.
Electron paramagnetic resonance (EPR), luminescence and infrared spectra of Mn2+ ions doped in zinc gallate (ZnGa2O4) powder phosphor have been studied. The EPR spectra have been recorded for zinc gallate phosphor doped with different concentrations of Mn2+ ions. The EPR spectra exhibit characteristic spectrum of Mn2+ ions (S=I=5/2) with a sextet hyperfine pattern, centered at geff=2.00. At higher concentrations of Mn2+ ions, the intensity of the resonance signals decreases. The number of spins participating in the resonance has been measured as a function of temperature and the activation energy (Ea) is calculated. The EPR spectra of ZnGa2O4: Mn2+ have been recorded at various temperatures. From the EPR data, the paramagnetic susceptibility (χ) at various temperatures, the Curie constant (C) and the Curie temperature (θ) have been evaluated. The emission spectrum of ZnGa2O4: Mn2+ (0.08 mol%) exhibits two bands centered at 468 and 502 nm. The band observed at 502 nm is attributed to 4T16A1 transition of Mn2+ ions. The band observed at 468 nm is attributed to the trap-state transitions. The excitation spectrum exhibits two bands centered at 228 and 280 nm. The strong band at 228 nm is attributed to host-lattice absorption and the weak band at 280 nm is attributed to the charge-transfer absorption or d5→d4s transition band. The observed bands in the FT-IR spectrum are assigned to the stretching vibrations of M-O groups at octahedral and tetrahedral sites.  相似文献   

20.
The magnetic state of a CaMnO3 ? δ crystal with ordered oxygen vacancies (for δ = 0.25, when the numbers of Mn4+ and Mn3+ ions in the manganite are equal to each other) is studied using neutron diffraction. Magnetic scattering in the CaMnO2.75 crystal in the ground state is determined by the wave vector (1/2, 1/2, 1/2)2π/a c (G-type antiferromagnetic order). In the crystal, long-range magnetic order disappears at the temperature T N = 116 K, whereas short-range magnetic order is retained up to 240 K. It is shown that the instability of the G-type structure in the temperature range 60 K < T < T N is associated, in many respects, with the formation of the C′ antiferromagnetic phase in the bulk of the crystal. The structure of the C′ antiferromagnetic phase involves chains with Mn3+-Mn4+ ferromagnetic interaction. A comparison of the results of the neutron diffraction investigations with the experimental data on the magnetic characteristics and electrical resistivity demonstrates that the specific features revealed in the spin system of the CaMnO2.75 crystal are governed directly by the competition of the Mn3+-Mn4+ ferromagnetic double exchange with the antiferromagnetic superexchange between manganese ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号