首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A novel aqueous in situ derivatization procedure with propyl chloroformate (PCF) for the simultaneous, quantitative analysis of Δ9‐tetrahydrocannabinol (THC), 11‐hydroxy‐Δ9‐tetrahydrocannabinol (OH‐THC) and 11‐nor‐Δ9‐tetrahydrocannabinol‐carboxylic acid (THC‐COOH) in human blood and urine is proposed. Unlike current methods based on the silylating agent [N,Obis(trimethylsilyl)trifluoroacetamide] added in an anhydrous environment, this new proposed method allows the addition of the derivatizing agent (propyl chloroformate, PCF) directly to the deproteinized blood and recovery of the derivatives by liquid–liquid extraction. This novel method can be also used for hydrolyzed urine samples. It is faster than the traditional method involving a derivatization with trimethyloxonium tetrafluoroborate. The analytes are separated, detected and quantified by gas chromatography–mass spectrometry in selected ion monitoring mode (SIM). The method was validated in terms of selectivity, capacity of identification, limits of detection (LOD) and quantification (LOQ), carryover, linearity, intra‐assay precision, inter‐assay precision and accuracy. The LOD and LOQ in hydrolyzed urine were 0.5 and 1.3 ng/mL for THC and 1.2 and 2.6 ng/mL for THC‐COOH, respectively. In blood, the LOD and LOQ were 0.2 and 0.5 ng/mL for THC, 0.2 and 0.6 ng/mL for OH‐THC, and 0.9 and 2.4 ng/mL for THC‐COOH, respectively. This method was applied to 35 urine samples and 50 blood samples resulting to be equivalent to the previously used ones with the advantage of a simpler method and faster sample processing time. We believe that this method will be a more convenient option for the routine analysis of cannabinoids in toxicological and forensic laboratories.  相似文献   

2.
A robust ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) method for the determination of morphine‐6‐d ‐glucuronide (M6G), morphine‐3‐d ‐glucuronide (M3G) and morphine (MOR) in human plasma and urine has been developed and validated. The analytes of interest were extracted from plasma by protein precipitation. The urine sample was prepared by dilution. Both plasma and urine samples were chromatographed on an Acquity UPLC HSS T3 column using gradient elution. Detection was performed on a Xevo TQ‐S tandem mass spectrometer in multiple reaction monitoring mode using positive electrospray ionization. Matrix interferences were not observed at the retention time of the analytes and internal standard, naloxone‐D5. The lower limits of quantitation of plasma and urine were 2/0.5/0.5 and 20/4/2 ng/mL for M6G/M3G/MOR, respectively. Calibration curves were linear over the concentration ranges of 2–2000/0.5–500/0.5–500 and 20–20,000/4–4000/2–2000 ng/mL for M6G/M3G/MOR in plasma and urine samples, respectively. The precision was <7.14% and the accuracy was within 85–115%. Furthermore, stability of the analytes at various conditions, dilution integrity, extraction recovery and matrix effect were assessed. Finally, this quantitative method was successfully applied to the pharmacokinetic study of M6G injection in Chinese noncancer pain patients.  相似文献   

3.
This paper presents a capillary electrophoresis method, developed for the detection, in human urine, of beta‐adrenergic agents and phenolalkylamines. The electrophoretic separation is achieved in less than 10 min and is based on the use of CEofix kit, for the dynamic capillary coating. The effects of accelerator buffer pH and separation voltage were investigated. The optimum buffer pH was found to be 2.5 for beta2‐agonists and 6.2 for beta‐blockers and phenoalkylamines with a separation voltage of 15 kV. Urine samples spiked with the compounds here studied were treated according to the standard procedure (SPE and evaporation to dryness) and analyzed by CE interfaced with an UV diode‐array, set at 195 and 210 nm. The quantitative validation results, obtained analyzing samples at three different concentrations, show a good precision of peak areas that do not exceed 5% for intra‐day assays and 10% for inter‐day assays. Good linearity (r2 > 0.995) was obtained within the 50–500 ng/mL concentration range. The qualitative validation data show a relative migration times (MTs) variation lower than 1%. The analytes were clearly distinguishable in urine, with LOD and LOQ in the range of 10–80 and 40–100 ng/mL, respectively.  相似文献   

4.
A highly sensitive method has been developed for the determination of urinary 7‐aminonitrazepam (7‐ANZP), the major metabolite of nitrazepam, using high‐performance electrospray liquid chromatography tandem mass spectrometry. The samples were prepared for analysis by adding 7‐aminoclonazepam (7‐ACZP, internal standard), hydrolysis with β‐glucuronidase and liquid–liquid extraction. Mass spectral acquisition was achieved by selectively monitoring the reaction between the two diagnostic transition reactions. Qualitative analysis was based on the retention time, and the quantitation was carried out by comparison with the internal standard. The recoveries of different concentrations of 7‐ANZP from spiked blank samples was 89.0–95.2%, and the relative standard deviation was below 6.4%. The limit of determination in urine was 0.07 ng/mL, and the limit of quantitation was 0.5 ng/mL in the linear range of 1–50 ng/mL. This method possesses the merits of convenient operation, high sensitivity and good repeatability, making it a practical method for analysis of 7‐ANZP in urine. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Aripiprazole is an important antipsychotic drug. A simple, sensitive and rapid ultra‐performance liquid chromatography/electrospray ionization tandem mass spectrometry (UPLC‐ESI‐MS/MS) method was developed and validated for the simultaneous quantification of this compound in rat plasma and brain homogenate. The analyte was extracted from rat plasma and brain homogenate using a weak cation exchange mixed‐mode resin‐based solid phase extraction. The compound was separated on an Agilent Eclipse Plus C18 (2.1 × 50 mm, 1.8 µm) column using a mobile phase of (A) 0.1% formic acid aqueous and (B) acetonitrile with gradient elution. The analyte was detected in positive ion mode using multiple reaction monitoring. The method was validated and the specificity, linearity, limit of quantitation (LOQ), precision, accuracy, recoveries and stability were determined. The LOQ was 0.5 ng/mL for aripiprazole in plasma and 1.5 ng/g in brain tissue. The MS response was linear over the concentration range 0.5–100 ng/mL for aripiprazole in plasma and 1.5–300 ng/g in brain tissue. The precision and accuracy for intra‐day and inter‐day were better than 14%. The relative and absolute recoveries were above 72% and the matrix effects were low. This validated method was successfully used to quantify the rat plasma and brain tissue concentrations of the analyte following chronic treatment with aripiprazole. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
This study describes the development of simple, rapid and sensitive liquid chromatography tandem mass spectrometry method for the simultaneous analysis of doxorubicin and its major metabolite, doxorubicinol, in mouse plasma, urine and tissues. The calibration curves were linear over the range 5–250 ng/mL for doxorubicin and 1.25–25 ng/mL for doxorubicinol in plasma and tumor, over the range 25–500 ng/mL for doxorubicin and 1.25–25 ng/mL for doxorubicinol in liver and kidney, and over the range 25–1000 ng/mL for doxorubicin and doxorubicinol in urine. The study was validated, using quality control samples prepared in all different matrices, for accuracy, precision, linearity, selectivity, lower limit of quantification and recovery in accordance with the US Food & Drug Administration guidelines. The method was successfully applied in determining the pharmaco‐distribution of doxorubicin and doxorubicinol after intravenously administration in tumor‐bearing mice of drug, free or nano‐formulated in ferritin nanoparticles or in liposomes. Obtained results demonstrate an effective different distribution and doxorubicin protection against metabolism linked to nano‐formulation. This method, thanks to its validation in plasma and urine, could be a powerful tool for pharmaceutical research and therapeutic drug monitoring, which is a clinical approach currently used in the optimization of oncologic treatments.  相似文献   

7.
The quantification of three alkaloids is important because quantitative study is a means of assessing the reliability of the experimental method, and three alkaloids of peimine, peiminine, and peimisine are main active ingredients in Chinese Pharmacopoeia 2015. An effective method based on the matrix solid‐phase dispersion microextraction was developed for the extraction of alkaloid compounds in Fritillariae Thunbergii Bulbus. Target analytes were analyzed by capillary electrophoresis coupled with quadrupole time‐of‐flight mass spectrometry. The optimized experimental condition was that 50 mg Fritillariae Thunbergii Bulbus was blended homogeneously with 10 mg citric acid for 5 min. Two hundred microliters of water acidized by 1 mol/L hydrochloric acid (pH = 4.5) was selected to elute tested alkaloids. The results demonstrated that the investigated method had low limits of detection (1.32–1.59 ng/mL), good recoveries (86.63–98.12%), and reproducibility (relative standard deviations of peak areas < 0.87%). The proposed matrix solid‐phase dispersion microextraction coupled with capillary electrophoresis combined with quadrupole time‐of‐flight mass spectrometry was successfully applied for the extraction of alkaloids in plants.  相似文献   

8.
Pucci V  Mandrioli R  Raggi MA 《Electrophoresis》2003,24(12-13):2076-2083
A rapid capillary zone electrophoresis method with indirect UV detection was developed and validated for the determination of valproic acid (VPA) in human plasma. The analyses were carried out under optimized conditions, using a buffer system composed of 15 mM benzoate and 0.5 mM cetyltrimethylammonium bromide at pH 6.0, and 25% v/v methanol; 2-hydroxybutyric acid was selected as the internal standard (IS). The capillary electrophoresis (CE) separation was carried out at a negative potential of 30 kV and the indirect UV detection was operated at 210 +/- 20 nm for all assays. The influence of buffer pH, ionic strength, concentration of electroosmotic flow (EOF) modifier and organic modifier on indirect signal response and migration behavior of the organic acid was investigated. Isolation of VPA from plasma was accomplished by a carefully implemented procedure using methanol as the precipitant agent. Using a high ratio of methanol to plasma for deproteinization (4:1), good absolute recovery of the analyte and satisfactory selectivity was obtained. The calibration line for VPA was linear over the 1-100 microg/mL concentration range. Sensitivity was high; in fact, the limit of detection (LOD) of VPA was 150 ng/mL and 450 ng/mL the limit of quantitation (LOQ). The results obtained analyzing real plasma samples from schizophrenic patients under polytherapy with VPA as well as antipsychotic drugs were satisfactory in terms of precision, accuracy and sensitivity.  相似文献   

9.
A liquid chromatography–tandem mass spectrometric method for the quantification of granisetron and its major metabolite, 7‐hydroxy granisetron in human plasma and urine samples was developed and validated. Respective stable isotopically labeled granisetron and 7‐hydroxy granisetron were used as internal standards (IS). Chromatography was performed using an Xselect HSS T3 analytical column with a mobile phase of 20% acetonitrile in water (containing 0.2 mM ammonium formate and 0.14% formic acid, pH 4) delivered in an isocratic mode. Tandem mass spectrometry operating in positive electrospray ionization mode with multiple reaction monitoring was used for quantification. The standard curves were linear in the concentration ranges of 0.5–100 ng/mL for granisetron and 0.1–100 ng/mL for 7‐hydroxy granisetron in human plasma samples, and 2–2000 ng/mL for granisetron and 2–1000 ng/mL for 7‐hydroxy granisetron in human urine samples, respectively. The accuracies were >85% and the precision as determined by the coefficient of variations was <10%. No significant matrix effects were observed for granisetron or 7‐hydroxy granisetron in either plasma or urine samples. Granisetron was stable under various storage and experimental conditions. This validated method was successfully applied to a pharmacokinetic study after intravenous administration of 1 mg granisetron to a pregnant subject. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Two capillary electrophoresis methods for monitoring renally excreted varenicline, a highly effective drug prescribed for smoking cessation, in human urine were developed and compared. A method combining capillary electrophoresis with mass spectrometry was proposed for the fast analysis of varenicline (analysis time up to 7 min). Here, mass spectrometry was a prerequisite for achieving high sensitivity and selectivity of the analysis suitable for the quantification of a 15 ng/mL level of varenicline in un‐pretreated urine matrices. An alternative approach, two‐dimensional (column‐coupled) capillary electrophoresis with enhanced sample load capacity and ultraviolet detection, was proposed as a low‐cost alternative to capillary electrophoresis with mass spectrometry. The isotachophoresis on‐line sample treatment included simple elimination of the major matrix constituents and stacking of the sample in a large volume so that threefold lower quantitation limits could be easily achieved in comparison to the capillary electrophoresis with mass spectrometry. On the other hand, longer analysis time (ca. 4.5‐fold) and more complex electrolyte system in the coupled zone electrophoresis step (including two additives enhancing separation selectivity, i.e. isopropanol and cyclodextrin) were prerequisites for the complete separation of varenicline from the sample matrix. Anyway, both the developed methods were validated according to the Food and Drug Administration guidelines showing favorable performance parameters, suitable for their routine biomedical use.  相似文献   

11.
Anandamide (AEA) is an endocannabinoid present in human plasma that is associated with several physiological functions and disease states. However, low AEA plasma levels pose challenges in terms of analytical characterization. Classical liquid‐based lipid extraction and solid‐phase extraction require complicated procedures and the drying down of relatively large volumes of solvents, making them unsuitable for high‐throughput analysis. Here a high‐throughput salting‐out assisted liquid–liquid extraction (SALLE) method with acetonitrile and mass spectrometry compatible salts for liquid chromatography–tandem mass spectrometry (LC‐MS/MS) analysis of AEA in human plasma has been developed and validated. The seamless interface of SALLE and LC‐MS eliminated the drying‐down step, only 100 μL of plasma is required and minimal volumes of organic solvent are used. Good reproducibility, accuracy and precision were demonstrated during the method validation. The method is linear up to 10 ng/mL with a lower limit of quantitation of 0.1 ng/mL for AEA, the accuracy for AEA was from 93.3 to 96.7% and the precision was <8.57%. This new methodology was successfully applied to analysis of clinical samples from maintenance hemodialysis patients. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Systemin is an important group of plant peptide hormones participating in the regulation of plant defensive responses. An improved method, based on dynamic pH junction and capillary electrophoresis‐quadrupole time‐of‐flight mass spectrometry, was developed for online enrichment and sensitive determination of trace systemins in plants. After optimization, the online enrichment factors for six target systemins ranged from 90‐ to 127‐fold. The detection limits reached lower than 0.5 nM, which were comparable with the sensitivity of LC‐MS method. Satisfactory quantitative results were obtained in terms of linearity (R2 ≥ 0.993), dynamic range (3–120 ng/mL), and reproducibility (≤6.7%). For the analysis of real plant samples, a rapid sample preparation method was developed, using two steps of SPE purification with different retention and separation mechanisms. Finally, this method realized the successful detection of tomato systemin and tobacco hydroxyproline‐rich systemin I from plant leaves with shorter analysis time.  相似文献   

13.
In this study, a liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed and validated to simultaneously determine the anticancer drugs etoposide and paclitaxel in mouse plasma and tissues including liver, kidney, lung, heart, spleen and brain. The analytes were extracted from the matrices of interest by liquid–liquid extraction using methyl tert‐butyl ether–dichloromethane (1:1, v/v). Chromatographic separation was achieved on an Ultimate XB‐C18 column (100 × 2.1 mm, 3 μm) at 40°C and the total run time was 4 min under a gradient elution. Ionization was conducted using electrospray ionization in the positive mode. Stable isotope etoposide‐d3 and docetaxel were used as the internal standards. The lower limit of quantitation (LLOQ) of etoposide was 1 ng/g tissue for all tissues and 0.5 ng/mL for plasma. The LLOQ of paclitaxel was 0.4 ng/g tissue and 0.2 ng/mL for all tissues and plasma, respectively. The coefficients of correlation for all of the analytes in the tissues and plasma were >0.99. Both intra‐ and inter‐day accuracy and precision were satisfactory. This method was successfully applied to measure plasma and tissue drug concentrations in mice treated with etoposide and paclitaxel‐loaded self‐microemulsifying drug‐delivery systems.  相似文献   

14.
This study describes application of liquid chromatography coupled with triple quadrupole mass spectrometry (LC‐MS) for evaluation of vitamin C stability, the objective being prediction of the degradation products. Detection was performed with an UV detector (UV‐Vis) in sequence with a triple‐quad mass spectrometer in the multiple reaction mode. The negative ion mode of ESI and MS‐MRM transitions of m/z 175→115 (quantifier) and 175→89 (qualifier) for ascorbic acid was used. All the validation parameters were within the range of acceptance proposed by the Food and Drug Administration. The method was fully validated in terms of linearity, LOD, LOQ, accuracy, and interday precision. Validation experiments revealed good linearity with R2 = 0.999 within the established concentration range, and excellent repeatability (9.3%). The LOD of the method was 0.1524 ng/mL whereas the LOQ was 0.4679 ng/mL. LC‐MS methodology proves to be an improved, simple, and fast approach to determining the content of vitamin C and its degradation products with high sensitivity, selectivity, and resolving power within 6 minutes of analysis.  相似文献   

15.
Determination of pregabalin in urine samples was carried out by nonaqueous CE with TOF‐MS via ESI, with a mixture of 10 mM ammonium formate and 0.05% acetic acid in methanol. By using TOF‐MS, accurate mass information was obtained, thus causing a great improvement in qualitative ability. In order to avoid ionic suppression, urine samples dilution 1:10 was used. This was the only treatment to urine samples before the injection. Despite this dilution, the detection limit was as low as 0.03 μg/mL for pregabalin. The method was validated with respect to accuracy, precision, and linearity, LOD, and LOQ. This method was applied to the analysis of urine samples from seven different cancer patients undergoing treatment with pregabalin. The developed method may find wide application for the routine determination of pregabalin in biological samples in order to establish a more efficient and safe dosage.  相似文献   

16.
《Analytical letters》2012,45(3):569-578
Abstract

Applying capillary zone electrophoresis (CZE) to separate the components of Cephradine for Injection: cephradine, and L‐arginine, as well as cephalexin, which is the degradation product of cephradine was studied. The best results were achieved with background electrolyte consisting of 50 mM disodium hydrogen phosphate buffer at pH 6.5 and an applied voltage of 20 kV in a bare fused‐silica capillary. The samples were injected at 50 mbar for 4 s. The capillary temperature was 25°C and the UV detection was performed at a wavelength of 195 nm. Histidine was used as internal standard (IS) to ensure acceptable precision data. The linear ranges of cephradine, L‐arginine, and cephalexin were 93.8–6255.6 µg/mL, 47.9–3195.2 µg/mL, and 6.1–405.4 µg/mL, respectively. Quantitative parameters such as accuracy, precision, limit of detection (LOD), and limit of quantitation(LOQ) were all established in CZE mode.  相似文献   

17.
An efficient and sensitive analytical method based on accelerated solvent extraction (ASE) and gas chromatography‐mass spectrometry‐selected ion monitoring (GC‐MS‐SIM) was developed and validated for analysis of cembranoids in flue‐cured tobacco leaves. Extraction efficiency of different pretreatment methods including liquid‐solid extraction (LSE), ultrasound‐assisted extraction (UAE), Soxlet extraction and accelerated solvent extraction (ASE) was compared and ASE was chosen as the optimal extraction method. During ASE procedure, effect of four parameters on extraction efficiency was considered and the experimental conditions were selected as follows: extraction solvent: dichloromethane; oven temperature: 50 °C; static time: 5 min and number of cycles: 2. Working standards of cembranoids were isolated by silica gel column chromatography and the identification was performed by mass spectrometry. Performance characteristics such as linearity, limit of detection (LOD), limit of quantitation (LOQ), precision and recovery were studied. The LOD and LOQ values were ranging from 5.0 × 10?3 to 6.9 × 10?3 μg/mL and 1.7 × 10?2 to 2.3 × 10?2 μg/mL for all analytes. At three different spiked levels, recoveries for CBT‐ol, α‐CBT‐diol and β‐CBT‐diol were 94.6%‐105.1%, 93.0%‐97.2% and 88.7%‐107.5% while the relative standard deviations (RSDs) were in the ranges of 3.9%‐6.2%, 1.8%‐8.7% and 1.7%‐6.0%, respectively. The proposed analytical methodology was successfully applied in the analysis of cembranoids in tobacco samples.  相似文献   

18.
A new, specific and sensitive GC‐MS method with electron impact ionization technique was developed for quantitative analysis of ezetimibe (EZE) in human plasma. Prior to GC analysis, EZE was derivatized with N‐methyl‐N‐trimethylsilyl‐trifluoroacetamide (MSTFA), which is a trimethyl silylating reagent. The derivatization reaction was optimized and parameters such as catalyst, derivatization time, temperature, solvent and the volume of silylating reagent were investigated. Trimethylsilyl ether derivative of EZE was determined in selected ion monitoring (SIM, mass‐to‐charge ratio (m/z): 326) mode. The method was validated with respect to LOD and LOQ, precision, accuracy, linearity, specificity, stability, and recovery. The LOQ and LOD were found as 15 and 10 ng/mL, respectively. The linearity of the method ranged from 15 to 250 ng/mL. The correlation coefficient of the calibration curve was 0.9977 ± 0.0004 (± S.E.M.). The intra‐ and inter‐day precisions (RSD) were less than 6% and accuracies (bias) for intra‐ and inter‐day accuracy were found between –4.04 and 9.71% at four different concentration levels (15, 40, 100, 250 ng/mL). The proposed method was successfully applied to real human plasma samples for determination of total EZE.  相似文献   

19.
Saxitoxin, which is one of the most typical paralytic shellfish poisoning toxins, ranks the highest intoxication rate of marine biological poisoning cases globally. Efficient clean‐up and extraction of saxitoxin from complex biological matrices are imperative for the analysis and concentration monitoring of the toxin when correlative poisoning cases happen. Herein, l ‐cysteine‐modified magnetic microspheres based on metal‐organic coordination were synthesized by a facile approach and applied for magnetic solid‐phase extraction of saxitoxin from rat plasma samples before liquid chromatography–tandem mass spectrometry detection. Parameters, including adsorbent amount, extraction time, desorption solution, and desorption time that could affect the extraction efficiency, were respectively investigated. The developed method demonstrated good linearity in the range of 5–300 ng/mL (R= 0.9985) with a limit of quantification of 5 ng/mL and a limit of detection of 0.5 ng/mL, acceptable accuracy. and precision of within‐run and between‐run.  相似文献   

20.
A simple, sensitive, and useful concentration method for lovastatin (Lvt) in urine has been developed based on the transient moving chemical reaction boundary method (tMCRBM) in capillary electrophoresis. The MCRB is formed with acidic sample buffer (Gly-HCl) and alkaline running buffer (Gly-NaOH). The following optimal conditions were determined for stacking and separation: electrophoretic buffer of 100 mM Gly- NaOH (pH 11.52), sample buffer of 20 mM Gly-HCl (pH 4.93), fused-silica capillary of 76 cm × 75-μm i.d (67 cm from detector), sample injection at 14 mbar for 3 min. A 21- to 26-fold increase in peak height was achieved for detection of Lvt in urine under the optimal conditions compared with normal capillary zone electrophoresis. By combining the sample pretreatment procedure with the stacking method, the sensitivity of Lvt in urine was increased by 105- to 130-fold. The limits of detection (LOD) and quantification (LOQ) for Lvt in urine were decreased to 8.8 ng/mL and 29.2 ng/mL, respectively. The intra-day and inter-day precision values (expressed as RSD) were 2.23–3.61% and 4.03–5.05%, respectively. The recoveries of the analyte at three concentration levels changed from 82.65 to 100.49%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号