首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Given a homological ring epimorphism from a ring R to another ring S, we show that if the left R-module S has a finite-type resolution, then the algebraic K-group K n (R) of R splits as the direct sum of the algebraic K-group K n (S) of S and the algebraic K-group K n (R) of a Waldhausen category R determined by the ring epimorphism. This result is then applied to endomorphism rings, matrix subrings, rings with idempotent ideals, and universal localizations which appear often in representation theory and algebraic topology.  相似文献   

2.
The minimum size of a binary code with length n and covering radius R is denoted by K(n, R). For arbitrary R, the value of K(n, R) is known when n ≤  2R +  3, and the corresponding optimal codes have been classified up to equivalence. By combining combinatorial and computational methods, several results for the first open case, K(2R +  4, R), are here obtained, including a proof that K(10, 3) =  12 with 11481 inequivalent optimal codes and a proof that if K(2R +  4, R) <  12 for some R then this inequality cannot be established by the existence of a corresponding self-complementary code.  相似文献   

3.
If R is a regular and semiartinian ring, it is proved that the following conditions are equivalent: (1) R is unit-regular, (2) every factor ring of R is directly finite, (3) the abelian group K O(R) is free and admits a basis which is in a canonical one to one correspondence with a set of representatives of simple right R-modules. For the class of semiartinian and unit-regular rings the canonical partial order of K O(R) is investigated. Starting from any partially ordered set I, a special dimension group G(I) is built and a large class of semiartinian and unit-regular rings is shown to have the corresponding K O(R) order isomorphic to G(P r i m R ), where P r i m R is the primitive spectrum of R. Conversely, if I is an artinian partially ordered set having a finite cofinal subset, it is proved that the dimension group G(I) is realizable as K O(R) for a suitable semiartinian and unit-regular ring R.  相似文献   

4.
Changing the mortality risks we face would change human life expectancy. As a special case, one could imagine adding a fixed increment R to all the age-specific mortality rates from age zero upwards. For this case we seek a constant K(A) such that K(A) x R approximates the resulting change in life expectancy remaining at age A, at least for small values of R. The formula for K(A) derived here corrects a heuristic argument that appeared in JORS earlier. An estimate of K(0) suggests that the permanent addition of a one-in-a-million risk at each year of life would reduce life expectancy at birth by about 1 day—a useful fact for risk communication.  相似文献   

5.
Let R be a ring with identity. We use J(R); G(R); and X(R) to denote the Jacobson radical, the group of all units, and the set of all nonzero nonunits in R; respectively. A ring is said to be Abelian if every idempotent is central. It is shown, for an Abelian ring R and an idempotent-lifting ideal N ? J(R) of R; that R has a complete set of primitive idempotents if and only if R/N has a complete set of primitive idempotents. The structure of an Abelian ring R is completely determined in relation with the local property when X(R) is a union of 2; 3; 4; and 5 orbits under the left regular action on X(R) by G(R): For a semiperfect ring R which is not local, it is shown that if G(R) is a cyclic group with 2 ∈ G(R); then R is finite. We lastly consider two sorts of conditions for G(R) to be an Abelian group.  相似文献   

6.
Let R be a prime ring of characteristic not 2, A be an additive subgroup of R, and F, T, D, K: A-R be additive maps such that F([x, y]) = F(x)y-yK(x)-T(y)x + xD(y) for all x, yEA. Our aim is to deal with this functional identity when A is R itself or a noncentral Lie ideal of R. Eventually, we are able to describe the forms of the mappings F, T, D, and K in case A = R with deg(R) > 3 and also in the case A is a noncentral Lie ideal and deg(R) > 9. These enable us in return to characterize the forms of both generalized Lie derivations, D-Lie derivations and Lie centralizers of R under some mild assumptions. Finally, we give a generalization of Lie homomorphisms on Lie ideals.  相似文献   

7.
In this paper we prove the following conformity criterion for the gradient of conformal radius ?R(D, z) of a convex domain D: the boundary ?D has to be a circumference. We calculate coefficients K(r) for K(r)-quasiconformal mappings ?R(D(r), z), D(r) ? D, 0 < r < 1, and complete the results obtained by F. G. Avkhadiev and K.-J. Wirths for the structure of boundary elements of quasiconformal mappings of the domain D.  相似文献   

8.
9.
For a finite group G and nonnegative integer n ≥ 0, one may consider the associated tower \(G \wr S_{n} := S_{n} \ltimes G^{n}\) of wreath product groups. Zelevinsky associated to such a tower the structure of a positive self-adjoint Hopf algebra (PSH-algebra) R(G) on the direct sum over integers n ≥ 0 of the Grothendieck groups K 0(R e p?G?S n ). In this paper, we study the interaction via induction and restriction of the PSH-algebras R(G) and R(H) associated to finite groups H ? G. A class of Hopf modules over PSH-algebras with a compatibility between the comultiplication and multiplication involving the Hopf k t h -power map arise naturally and are studied independently. We also give an explicit formula for the natural PSH-algebra morphisms R(H) → R(G) and R(G) → R(H) arising from induction and restriction. In an appendix, we consider a family of subgroups of wreath product groups analogous to the subgroups G(m, p, n) of the wreath product cyclotomic complex reflection groups G(m, 1, n).  相似文献   

10.
We present necessary and sufficient conditions on planar compacta K and continuous functions f on K in order that f generate the algebras P(K), R(K), A(K) or C(K). We also unveil quite surprisingly simple examples of non-polynomial convex compacta K ? C and fP(K) with the property that fP(K) is a homeomorphism of K onto its image, but for which f ?1 ? P(f(K)). As a consequence, such functions do not admit injective holomorphic extensions to the interior of the polynomial convex hull \(\widehat K\). On the other hand, it is shown that the restriction f*|G of the Gelfand-transform f* of an injective function fP(K) is injective on every regular, bounded complementary component G of K. A necessary and sufficient condition in terms of the behaviour of f on the outer boundary of K is given in order that f admit a holomorphic injective extension to \(\widehat K\). We also include some results on the existence of continuous logarithms on punctured compacta containing the origin in their boundary.  相似文献   

11.
We consider brave new cochain extensions F(BG +,R) → F(EG +,R), where R is either a Lubin-Tate spectrum E n or the related 2-periodic Morava K-theory K n , and G is a finite group. When R is an Eilenberg-Mac Lane spectrum, in some good cases such an extension is a G-Galois extension in the sense of John Rognes, but not always faithful. We prove that for E n and K n these extensions are always faithful in the K n local category. However, for a cyclic p-group \(C_{p^r } \), the cochain extension \(F(BC_{p^r + } ,E_n ) \to F(EC_{p^r + } ,E_n )\) is not a Galois extension because it ramifies. As a consequence, it follows that the E n -theory Eilenberg-Moore spectral sequence for G and BGdoes not always converge to its expected target.  相似文献   

12.
Every life faces a certain age-specific mortality risk. Changing this mortality risk for a life aged A by a small quantity R, say, would change the life expectancy by R x K, where K is some constant. Kamerud has proposed a model for K which is independent of R. This note offers an improvement to Kamerud's model which depends on both A and R.  相似文献   

13.
Let R be a prime ring of characteristic different from 2 and 3, Qr its right Martindale quotient ring, C its extended centroid, L a non-central Lie ideal of R and n ≥ 1 a fixed positive integer. Let α be an automorphism of the ring R. An additive map D: RR is called an α-derivation (or a skew derivation) on R if D(xy) = D(x)y + α(x)D(y) for all x, yR. An additive mapping F: RR is called a generalized α-derivation (or a generalized skew derivation) on R if there exists a skew derivation D on R such that F(xy) = F(x)y + α(x)D(y) for all x, yR.  相似文献   

14.
Let G be a finite group. The spectrum of G is the set ω(G) of orders of all its elements. The subset of prime elements of ω(G) is called the prime spectrum and is denoted by π(G). A group G is called spectrum critical (prime spectrum critical) if, for any subgroups K and L of G such that K is a normal subgroup of L, the equality ω(L/K) = ω(G) (π(L/K) = π(G), respectively) implies that L = G and K = 1. In the present paper, we describe all finite simple groups that are not spectrum critical. In addition, we show that a prime spectrum minimal group G is prime spectrum critical if and only if its Fitting subgroup F(G) is a Hall subgroup of G.  相似文献   

15.
Let R be a right coherent ring and D~b(R-Mod) the bounded derived category of left R-modules. Denote by D~b(R-Mod)_([G F,C]) the subcategory of D~b(R-Mod) consisting of all complexes with both finite Gorenstein flat dimension and cotorsion dimension and K~b(F ∩ C) the bounded homotopy category of flat cotorsion left R-modules. We prove that the quotient triangulated category D~b(R-Mod)_([G F,C])/K~b(F ∩ C) is triangle-equivalent to the stable category GF ∩ C of the Frobenius category of all Gorenstein flat and cotorsion left R-modules.  相似文献   

16.
Let #K be a number of integer lattice points contained in a set K. In this paper we prove that for each d ∈ N there exists a constant C(d) depending on d only, such that for any origin-symmetric convex body K ? R d containing d linearly independent lattice points
$$\# K \leqslant C\left( d \right)\max \left( {\# \left( {K \cap H} \right)} \right)vo{l_d}{\left( K \right)^{\frac{{d - m}}{d}}},$$
where the maximum is taken over all m-dimensional subspaces of R d . We also prove that C(d) can be chosen asymptotically of order O(1) d d d?m . In particular, we have order O(1) d for hyperplane slices. Additionally, we show that if K is an unconditional convex body then C(d) can be chosen asymptotically of order O(d) d?m .
  相似文献   

17.
In this paper, for rings R, we introduce complex rings ?(R), quaternion rings ?(R), and octonion rings O(R), which are extension rings of R; R ? ?(R) ? ?(R) ? O(R). Our main purpose of this paper is to show that if R is a Frobenius algebra, then these extension rings are Frobenius algebras and if R is a quasi-Frobenius ring, then ?(R) and ?(R) are quasi-Frobenius rings and, when Char(R) = 2, O(R) is also a quasi-Frobenius ring.  相似文献   

18.
Let R be a commutative ring. The annihilator graph of R, denoted by AG(R), is the undirected graph with all nonzero zero-divisors of R as vertex set, and two distinct vertices x and y are adjacent if and only if ann R (xy) ≠ ann R (x) ∪ ann R (y), where for zR, ann R (z) = {rR: rz = 0}. In this paper, we characterize all finite commutative rings R with planar or outerplanar or ring-graph annihilator graphs. We characterize all finite commutative rings R whose annihilator graphs have clique number 1, 2 or 3. Also, we investigate some properties of the annihilator graph under the extension of R to polynomial rings and rings of fractions. For instance, we show that the graphs AG(R) and AG(T(R)) are isomorphic, where T(R) is the total quotient ring of R. Moreover, we investigate some properties of the annihilator graph of the ring of integers modulo n, where n ? 1.  相似文献   

19.
Let R be any ring. We motivate the study of a class of chain complexes of injective R-modules that we call AC-injective complexes, showing that K(AC-Inj), the chain homotopy category of all AC-injective complexes, is always a compactly generated triangulated category. In general, all DGinjective complexes are AC-injective and in fact there is a recollement linking K(AC-Inj) to the usual derived category D(R). This is based on the author’s recent work inspired by work of Krause and Stovicek. Our focus here is on giving straightforward proofs that our categories are compactly generated.  相似文献   

20.
We introduce non-associative Ore extensions, S = R[X; σ, δ], for any nonassociative unital ring R and any additive maps σ, δ: RR satisfying σ(1) = 1 and δ(1) = 0. In the special case when δ is either left or right R δ -linear, where R δ = ker(δ), and R is δ-simple, i.e. {0} and R are the only δ-invariant ideals of R, we determine the ideal structure of the nonassociative differential polynomial ring D = R[X; id R , δ]. Namely, in that case, we show that all non-zero ideals of D are generated by monic polynomials in the center Z(D) of D. We also show that Z( D ) = R δ [p] for a monic pR δ [X], unique up to addition of elements from Z(R) δ . Thereby, we generalize classical results by Amitsur on differential polynomial rings defined by derivations on associative and simple rings. Furthermore, we use the ideal structure of D to show that D is simple if and only if R is δ-simple and Z(D) equals the field R δ Z(R). This provides us with a non-associative generalization of a result by Öinert, Richter and Silvestrov. This result is in turn used to show a non-associative version of a classical result by Jordan concerning simplicity of D in the cases when the characteristic of the field R δ Z(R) is either zero or a prime. We use our findings to show simplicity results for both non-associative versions of Weyl algebras and non-associative differential polynomial rings defined by monoid/group actions on compact Hausdorff spaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号