共查询到20条相似文献,搜索用时 10 毫秒
1.
Alexander Stolz Kevin Jooß Oliver Hcker Jennifer Rmer Johannes Schlecht Christian Neusüß 《Electrophoresis》2019,40(1):79-112
Capillary electrophoresis (CE) offers fast and high‐resolution separation of charged analytes from small injection volumes. Coupled to mass spectrometry (MS), it represents a powerful analytical technique providing (exact) mass information and enables molecular characterization based on fragmentation. Although hyphenation of CE and MS is not straightforward, much emphasis has been placed on enabling efficient ionization and user‐friendly coupling. Though several interfaces are now commercially available, research on more efficient and robust interfacing with nano‐electrospray ionization (ESI), matrix‐assisted laser desorption/ionization (MALDI) and inductively coupled plasma mass spectrometry (ICP) continues with considerable results. At the same time, CE‐MS has been used in many fields, predominantly for the analysis of proteins, peptides and metabolites. This review belongs to a series of regularly published articles, summarizing 248 articles covering the time between June 2016 and May 2018. Latest developments on hyphenation of CE with MS as well as instrumental developments such as two‐dimensional separation systems with MS detection are mentioned. Furthermore, applications of various CE‐modes including capillary zone electrophoresis (CZE), nonaqueous capillary electrophoresis (NACE), capillary gel electrophoresis (CGE) and capillary isoelectric focusing (CIEF) coupled to MS in biological, pharmaceutical and environmental research are summarized. 相似文献
2.
Study of immobilized metal affinity chromatography sorbents for the analysis of peptides by on‐line solid‐phase extraction capillary electrophoresis‐mass spectrometry 下载免费PDF全文
Lorena Ortiz‐Martin Fernando Benavente Silvia Medina‐Casanellas Estela Giménez Victoria Sanz‐Nebot 《Electrophoresis》2015,36(6):962-970
Several commercial immobilized metal affinity chromatography sorbents were evaluated in this study for the analysis of two small peptide fragments of the amyloid β‐protein (Aβ) (Aβ(1–15) and Aβ(10–20) peptides) by on‐line immobilized metal affinity SPE‐CE (IMA‐SPE‐CE). The performance of a nickel metal ion (Ni(II)) sorbent based on nitrilotriacetic acid as a chelating agent was significantly better than two copper metal ion (Cu(II)) sorbents based on iminodiacetic acid. A BGE of 25 mM phosphate (pH 7.4) and an eluent of 50 mM imidazole (in BGE) yielded a 25‐fold and 5‐fold decrease in the LODs by IMA‐SPE‐CE‐UV for Aβ(1–15) and Aβ(10–20) peptides (0.1 and 0.5 μg/mL, respectively) with regard to CE‐UV (2.5 μg/mL for both peptides). The phosphate BGE was also used in IMA‐SPE‐CE‐MS, but the eluent needed to be substituted by a 0.5% HAc v/v solution. Under optimum preconcentration and detection conditions, reproducibility of peak areas and migration times was acceptable (23.2 and 12.0%RSD, respectively). The method was more sensitive for Aβ(10–20) peptide, which could be detected until 0.25 μg/mL. Linearity for Aβ(10–20) peptide was good in a narrow concentration range (0.25–2.5 μg/mL, R2 = 0.93). Lastly, the potential of the optimized Ni(II)‐IMA‐SPE‐CE‐MS method for the analysis of amyloid peptides in biological fluids was evaluated by analyzing spiked plasma and serum samples. 相似文献
3.
Twenty underivatized essential amino acids were separated using capillary zone electrophoresis and consequently detected with contactless conductivity detection (CCD). A simple acidic background electrolyte (BGE) containing 2.3 M acetic acid and 0.1% w/w hydroxyethylcellulose (HEC) allowed the electrophoretic separation and sensitive detection of all 20 essential amino acids in their underivatized cationic form. The addition of HEC to the BGE suppressed both, electroosmotic flow and analyte adsorption on the capillary surface resulting in an excellent migration time reproducibility and a very good analyte peak symmetry. Additionally, the HEC addition significantly reduced the noise and long-term fluctuations of the CCD baseline. The optimized electrophoretic separation method together with the CCD was proved to be a powerful technique for determination of amino acid profiles in various natural samples, like beer, yeast, urine, saliva, and herb extracts. 相似文献
4.
The applicability of CZE with mass spectrometric detection for the determination of four chlorine species, namely chloride and three stable chlorine oxyanions, was studied. The main aspects of the proper selection of BGE and sheath liquid for the CE‐MS determinations of anions with high mobility were demonstrated, pointing out the importance of pH and the mobility of the anion in the BGE. The possibility of using uncoated fused silica capillary and common electrolytes for the separation was shown and the advantage of using extra pressure at the inlet capillary end was also presented. The linear range was found to be 1–100 µg/mL for ClO3? and ClO4?, 5–500 µg/mL for ClO2?, and 25–500 µg/mL for Cl?, but the sensitivity can be greatly improved if larger sample volume is injected and electrostacking effect is utilized. The LOD for ClO3? in drinking water was 6 ng/mL, when very large sample volume was injected (10 000 mbar·s was applied). 相似文献
5.
Summary Capillary zone electrophoresis (CZE) has been coupled with mass spectrometry to enable the identification of mineral and organometallic
compounds of arsenic in speciation studies. The electrophoretic effluent was introduced through a concentric interface into
the mass spectrometer. Make-up liquid was added to enable electric contact at the outlet of the separation capillary and to
assist the electronebulization process. After ionization, the ions were analyzed and quantified with an ion-trap detector.
Optimization of the coupling conditions (geometry of the concentric interface, composition and flow rate of the sheath liquid,
electronebulization and detection conditions) is described. The results show that the geometry of the concentric interface
and the positioning of the outlet of the separation capillary have a critical effect on stability and sensitivity.
Programming the electronebulization and detection conditions throughout the analysis enabled identification and quantification
of the seven arsenic compounds of interest (neutral, and positively or negatively charged species) in less than 20 min at
the ppm level. Limits of detection ranged from 0.5 to 3.3 mg L−1, corresponding to amounts injected ranging from 15 to 60 pg. The linear dependence of mass spectrometric response on arsenic
concentration was verified for concentrations ranging from 5 to 200 mgL−1. For the two positively charged species, arsenobetaine and arsenocholine, an on-line preconcentration technique (field-amplified
sample injection) enabled reduction of the detection limits by approximately one order of magnitude to 110 and 160 μgL−1, respectively. 相似文献
6.
Capillary electrophoresis dynamic reaction cell™ inductively coupled plasma mass spectrometry (CE-DRC-ICP-MS) for the determination of sulfur-containing amino acids is described. The sulfur-containing amino acids studied include l-cysteine, l-cystine, dl-homocystine and l-methionine. The species studied were well separated using a 70 cm length×75 μm i.d. fused silica capillary while the applied voltage was set at +22 kV and a 10 mmol l−1 disodium tetraborate buffer (pH 9.8) containing 0.1 mmol l−1 EDTA and 0.5 mmol l−1 Triton X-100 was used as the electrophoretic buffer. The sulfur-selective electropherogram was determined at m/z 48 as by using its reaction with O2 in the reaction cell. The method avoided the effect of polyatomic isobaric interferences at m/z 32 caused by and on by detecting as the oxide ion at m/z 48, which is less interfered. The detection limit of various species studied was in the range of 0.047-0.058 μg S ml−1, which corresponded to the absolute detection limit of 1.3-1.6 pg S based on the injection volume of 27 nl. We determined the concentrations of selected sulfur-containing amino acids in urine and nutritive complement samples. The recovery was in the range of 92-128% for various species. 相似文献
7.
Jana Krenkova Karel Kleparnik Jaroslav Luksch Frantisek Foret 《Electrophoresis》2019,40(18-19):2263-2270
One of the challenging instrumental aspects in coupling an automated CE instrument with ESI mass spectrometry (CE‐MS) is finding the balance between the stability, reproducibility and sensitivity of the analysis and compatibility with the standard CE instrumentation. Here, we present a development of a new liquid junction based electrospray interface for automated CE‐MS, with a focus on the technical design followed by computer modeling of transport conditions as well as characterization of basic performance of the interface. This hybrid arrangement designed as a microfabricated unit attachable to the automated CE instrument allows using of a wide range of separation capillaries with respect to their diameter, length or internal coating (e.g., for suppressed electroosmotic flow). Different compositions of the ESI liquid and background electrolyte solutions can be used if needed. The microfabricated part, prepared by laser machining from polyimide, includes a self‐aligning liquid junction, a short transport channel, and a pointed sprayer for the electrospray ionization. This microfabricated part is positioned in a plastic connection block securing the separation capillary and flushing ports. Transport conditions were modelled using computer simulation and the real life performance of the interface was compared to that of a commercial sheath liquid interface. The basic performance of the interface was demonstrated by separations of peptides, proteins, and oligosaccharides. 相似文献
8.
A. Prior R.C. Moldovan J. Crommen A.C. Servais M. Fillet G.J. de Jong G.W. Somsen 《Analytica chimica acta》2016
The sensitivity of coupled enantioselective capillary electrophoresis-mass spectrometry (CE-MS) of amino acids (AAs) is often hampered by the chiral selectors in the background electrolyte (BGE). A new method is presented in which the use of a chiral selector is circumvented by employing (+)-1-(9-fluorenyl)ethyl chloroformate (FLEC) as chiral AA derivatizing agent and ammonium perfluorooctanoate (APFO) as a volatile pseudostationary phase for separation of the formed diastereomers. Efficient AA derivatization with FLEC was completed within 10 min. Infusion experiments showed that the APFO concentration hardly affects the MS response of FLEC-AAs and presents significantly less ion suppression than equal concentrations of ammonium acetate. The effect of the pH and APFO concentration of the BGE and the capillary temperature were studied in order to achieve optimized enantioseparation. Optimization of CE-MS parameters, such as sheath-liquid composition and flow rate, ESI and MS settings was performed in order to prevent analyte fragmentation and achieve sensitive detection. Selective detection and quantification of 14 chiral proteinogenic AAs was achieved with chiral resolution between 1.2 and 8.6, and limits of detection ranging from 130 to 630 nM injected concentration. Aspartic acid and glutamic acid were detected, but not enantioseparated. The optimized method was applied to the analysis of chiral AAs in cerebrospinal fluid (CSF). Good linearity (R2 > 0.99) and acceptable peak area and electrophoretic mobility repeatability (RSDs below 21% and 2.4%, respectively) were achieved for the chiral proteinogenic AAs, with sensitivity and chiral resolution mostly similar to obtained for standard solutions. Next to l-AAs, endogenous levels of d-serine and d-glutamine could be measured in CSF revealing enantiomeric ratios of 4.8%–8.0% and 0.34%–0.74%, respectively, and indicating the method's potential for the analysis of low concentrations of d-AAs in presence of abundant l-AAs. 相似文献
9.
Wang T Fekete A Gaspar A Ma J Liang Z Yuan H Zhang L Schmitt-Kopplin P Zhang Y 《Journal of separation science》2011,34(4):422-427
A novel method for the separation and detection of low molecular weight (LMW) acids was developed using monolithic immobilized pH gradient-based capillary isoelectric focusing coupled with mass spectrometry. Two main parameters, focusing conditions and delivery buffer conditions, which might affect separation efficiency, were optimized with the focusing time of 7 min at 350 V/cm and the delivery buffer of 50% (v/v) acetonitrile in 10 mmol/L ammonium formate (pH 3.0). Under these conditions, the linear correlation between the volume of delivery solvent and the pK(a) of the model components was observed. In addition, the separation mechanism of LMW acids was proposed as well. We suppose that this method may provide a useful tool for the characterization of LMW components (e.g. natural organic matter of different origins). 相似文献
10.
Microchip capillary electrophoresis with electrochemical detector for fast measurements of aromatic amino acids 总被引:2,自引:0,他引:2
A method based on microchip capillary electrophoresis with amperometric detection was developed for the rapid separation and direct detection of oxidizable aromatic amino acids (without prior derivatization). The working electrode was a thick-film carbon strip electrode positioned opposite the outlet of the separation channel. Factors influencing the separation and detection processes were examined and optimized. The five aromatic amino acids, tyrosine, 5-hydroxytryptophan, tryptophan, p-aminobenzoic acid, and m-aminobenzoic acid, can be well separated within 5 min using a separation voltage of 2000 V and a 25 mM phosphate buffer (pH 7.0) run buffer containing 50 mM sodium dodecylsulfate. Most favorable amperometric detection was obtained at +0.95 V. Linear calibration plots are observed for micromolar concentrations of the oxidizable amino acids. The new protocol offers good stability and for reproducibility, with relative S.D. of less than 5% for both migration times and peak currents (n=8). It should be useful for the analysis of aromatic amino acids, as desired for life sciences. 相似文献
11.
《Electrophoresis》2018,39(16):2069-2082
High‐resolution capillary zone electrophoresis – mass spectrometry (CZE‐MS) has been of increasing interest for the analysis of biopharmaceuticals. In this work, a combination of middle‐down and intact CZE‐MS analyses has been implemented for the characterization of a biotherapeutic monoclonal antibody (mAb) with a variety of post‐translational modifications (PTMs) and glycosylation structures. Middle‐down and intact CZE separations were performed in an acidified methanol‐water background electrolyte on a capillary with a positively charged coating (M7C4I) coupled to an Orbitrap mass spectrometer using a commercial sheathless interface (CESI). Middle‐down analysis of the IdeS‐digested mAb provided characterization of PTMs of digestion fragments. High resolution CZE enabled separation of charge variants corresponding to 2X‐deamidated, 1X‐deamidated, and non‐deamidated forms at baseline resolution. In the course of the middle‐down CZE‐MS analysis, separation of glycoforms of the FC/2 fragment was accomplished due to hydrodynamic volume differences. Several identified PTMs were confirmed by CZE‐MS2. Incorporation of TCEP‐HCl reducing agent in the sample solvent resulted in successful analysis of reduced forms without the need for alkylation. CZE‐MS studies on the intact mAb under denaturing conditions enabled baseline separation of the 2X‐glycosylated, 1X‐glycosylated, and aglycosylated populations as a result of hydrodynamic volume differences. The presence of a trace quantity of dissociated light chain was also detected in the intact protein analysis. Characterization of the mAb under native conditions verified identifications achieved via intact analysis and allowed for quantitative confirmation of proteoforms. Analysis of mAbs using CZE‐MS represents a complementary approach to the more conventional liquid‐chromatography – mass spectrometry‐based approaches. 相似文献
12.
Expanding the scope of pressure‐assisted electrokinetic injection for online concentration of positively charged analytes in capillary electrophoresis‐mass spectrometry 下载免费PDF全文
Sample injection is a crucial step in CE. In past, many efforts have been focused on concentrating the analytes into a sharp sample plug. In 2006, pressure‐assisted electrokinetic injection (PAEKI) was proposed as a new preconcentration technique for anions. In this study, we expanded the applicability of PAEKI to online preconcentrate positively charged analytes. l ‐Arginine, l ‐lysine, and imidazole were chosen as target analytes for method development. The enhancement factor of PAEKI was over 3000‐fold. When CZE was coupled with a Q‐TOF system, PAEKI delivers a detection limit of 18–28 pg/mL and a dynamic calibration range over four orders of magnitude. The RSD was less than 6.4% (n = 4) on both peak area and migration time, indicating a good repeatability. 相似文献
13.
Double‐layer poly(vinyl alcohol)‐coated capillary for highly sensitive and stable capillary electrophoresis and capillary electrophoresis with mass spectrometry glycan analysis 下载免费PDF全文
Yi‐Wei Zhang Ming‐Zhe Zhao Jing‐Xin Liu Ying‐Lin Zhou Xin‐Xiang Zhang 《Journal of separation science》2015,38(3):475-482
Glycosylation plays an important role in protein conformations and functions as well as many biological activities. Capillary electrophoresis combined with various detection methods provided remarkable developments for high‐sensitivity glycan profiling. The coating of the capillary is needed for highly polar molecules from complex biosamples. A poly(vinyl alcohol)‐coated capillary is commonly utilized in the capillary electrophoresis separation of saccharides sample due to the high‐hydrophilicity properties. A modified facile coating workflow was carried out to acquire a novel multiple‐layer poly(vinyl alcohol)‐coated capillary for highly sensitive and stable analysis of glycans. The migration time fluctuation was used as index in the optimization of layers and a double layer was finally chosen, considering both the effects and simplicity in fabrication. With migration time relative standard deviation less than 1% and theoretical plates kept stable during 100 consecutive separations, the method was presented to be suitable for the analysis of glycosylation with wide linear dynamic range and good reproducibility. The glycan profiling of enzymatically released N‐glycans from human serum was obtained by the presented capillary electrophoresis method combined with mass spectrometry detection with acceptable results. 相似文献
14.
Combination of dynamic pH junction with capillary electrophoresis‐mass spectrometry for the determination of systemins in plant samples 下载免费PDF全文
Systemin is an important group of plant peptide hormones participating in the regulation of plant defensive responses. An improved method, based on dynamic pH junction and capillary electrophoresis‐quadrupole time‐of‐flight mass spectrometry, was developed for online enrichment and sensitive determination of trace systemins in plants. After optimization, the online enrichment factors for six target systemins ranged from 90‐ to 127‐fold. The detection limits reached lower than 0.5 nM, which were comparable with the sensitivity of LC‐MS method. Satisfactory quantitative results were obtained in terms of linearity (R2 ≥ 0.993), dynamic range (3–120 ng/mL), and reproducibility (≤6.7%). For the analysis of real plant samples, a rapid sample preparation method was developed, using two steps of SPE purification with different retention and separation mechanisms. Finally, this method realized the successful detection of tomato systemin and tobacco hydroxyproline‐rich systemin I from plant leaves with shorter analysis time. 相似文献
15.
Wei Zhang Karen Segers Debby Mangelings Ann Van Eeckhaut Thomas Hankemeier Yvan Vander Heyden Rawi Ramautar 《Electrophoresis》2019,40(18-19):2309-2320
The actual utility of capillary electrophoresis‐mass spectrometry (CE‐MS) for biomarker discovery using metabolomics still needs to be assessed. Therefore, a simulated comparative metabolic profiling study for biomarker discovery by CE‐MS was performed, using pooled human plasma samples with spiked biomarkers. Two studies have been carried out in this work. Focus of study I was on comparing two sets of plasma samples, in which one set (class I) was spiked with five isotope‐labeled compounds, whereas another set (class II) was spiked with six different isotope‐labeled compounds. In study II, focus was also on comparing two sets of plasma samples, however, the isotope‐labeled compounds were spiked to both class I and class II samples but with concentrations which differ by a factor two between both classes (with one compound absent in each class). The aim was to determine whether CEMS‐based metabolomics could reveal the spiked biomarkers as the main classifiers, applying two different data analysis software tools (MetaboAnalyst and Matlab). Unsupervised analysis of the recorded metabolic profiles revealed a clear distinction between class I and class II plasma samples in both studies. This classification was mainly attributed to the spiked isotope‐labeled compounds, thereby emphasizing the utility of CE‐MS for biomarker discovery. 相似文献
16.
Capillary electrophoresis (CE) was compared with reversed-phase liquid chromatography for its ability to separate native and deamidated peptides. CE is shown to provide superior resolution of these peptides due to its charge-based separation mechanism. Fraction collection performed using a standard CE instrument equipped with a 96-well plate permits subsequent characterization by nanospray mass spectrometric (MS) analysis. Additional in-depth analysis by MS/MS is able to provide the location of the deamidation site based on y-ion mass shifts of 1 Da. 相似文献
17.
The determination of cationic constituents of sweat is widely recognized as a difficult analytical task due to its complex composition and minute sample volumes available for the individual analysis. Capillary electrophoresis (CE) has been evaluated as a simple routine method to measure sweat metal cations, biogenic amines, and amino acids using a sampling procedure previously developed in one of collaborative teams. The carrier electrolyte, which consisted of 10 mM 4-methylbenzylamine, 6.5 mM α-hydroxyisobutyric acid, and 2 mM 18-crown-6 at pH 4.25, allowed the separation of five cations (NH4+, K+, Ca2+, Na+, Mg2+) and four amino acids (ornithine, histidine, lysine, arginine) to be completed in about 13 min with a positive polarity of the applied voltage (30 kV). By increasing the sample volume (due to employing hydrodynamic instead of hydrostatic injection mode), it was also possible to detect indirect UV signals of Zn2+, diethanolamine, and trithanolamine. Sweat samples were collected from the fingers and forearms of three healthy male volunteers and analyzed by CE. A good repeatability and reproducibility of peak area responses based on five intraday and three inter-day assays (average %R.S.D. less than 3.5 and 2.5, respectively) were obtained. The limits of detection were in the range of 3.2-5.8 μM for alkali and alkaline-earth cations (hydrostatic injection) and 0.27-0.79 μM for other target analytes (hydrodynamic injection). The analytical results for particular analytes were found to vary, depending on the sampling spot and individual, but in general correspond well to clinical concentration ranges. 相似文献
18.
A general equation established in a previous study was used to model the electrophoretic mobility of a series of opioid peptides as a function of pH of the separation electrolyte. The concordance between the predicted and the experimental electrophoretic mobilities was excellent and the optimum pH for the separation of the modelled compounds could be predicted from a limited amount of experimental data. The equations were also useful for the accurate determination of the ionization constants of the polyprotic analytes. It was also demonstrated that if ionization constant values are known, the CE separations of the studied peptides can easily be predicted taking into account the classical semiempirical relationships between electrophoretic mobility and charge-to-mass ratio (me versus q/Mα). The separations simulated considering the accurate charge-to-mass ratios of each peptide at a certain pH value were in good agreement with the experimental results.Once an optimum separation pH value and a running buffer compatible with electrospray mass spectrometry (ESI) detection were selected, a method for the separation and characterization of this series of analytes by capillary electrophoresis-electrospray ionization mass spectrometry (CE-ESI-MS) was established using a commercial sheath-flow interface. Method validation was performed in order to prove the suitability of the proposed method for quantitative analysis. Thus, quality parameters, such as repeatability, reproducibility, limits of detection and linearity were determined. 相似文献
19.
20.
Capillary isoelectric focusing (cIEF) was online coupled to a Q‐TOF MS by a flow‐through microvial interface for the analysis of therapeutic mAb. Intact molecular weights obtained from the mass spectrum deconvolution of separated charge variants provided information on the structural heterogeneity of therapeutic mAbs. A sandwich cIEF–MS configuration composed of anolyte, sample, and catholyte segments sequentially injected into a neutrally coated capillary was used for the charge heterogeneity separation of four mAbs. Acetic acid and ammonium hydroxide were used in places of the non‐volatile acids and bases commonly used for IEF but are incompatible with online MS detection. Glycerol was added as the anti‐convective reagent. A chemical modifier was mixed with the cIEF effluent in the flow‐throw microvial to maintain the ESI stability and to mitigate ion suppression from the co‐eluted carrier ampholytes and glycerol. Analysis of mAb samples have shown relative populations of two basic variants originating from C‐terminal lysine process and acidic variant of deamidation. The lysine clippings, deamidation, and sialic acid modification in oligosaccharide chains were revealed in infliximab. Two lysine clipping variants and a deamidated variant were observed in adalimumab. The duplicate analyses of a reference mAb demonstrated five charge variants separated by cIEF due to some unidentified modifications, as their mass spectra shared close similarities. The mAb analyses demonstrated the feasibility of the cIEF–MS method, and they demonstrated how charge and structural variants and minor differences in therapeutic mAbs are observed with this technology. Online cIEF–MS is an information rich technology with high throughput, demonstrated by the initial data presented here. 相似文献