首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The thermal stability of several commonly used crystalline matrix‐assisted ultraviolet laser desorption/ionization mass spectrometry (UV‐MALDI‐MS) matrices, 2,5‐dihydroxybenzoic acid (gentisic acid; GA), 2,4,6‐trihydroxyacetophenone (THA), α‐cyano‐4‐hydroxycinnamic acid (CHC), 3,5‐dimethoxy‐4‐hydroxycinnamic acid (sinapinic acid; SA), 9H‐pirido[3,4‐b]indole (nor‐harmane; nor‐Ho), 1‐methyl‐9H‐pirido[3,4‐b]indole (harmane; Ho), perchlorate of nor‐harmanonium ([nor‐Ho + H]+) and perchlorate of harmanonium ([Ho + H]+) was studied by heating them at their melting point and characterizing the remaining material by using different MS techniques [electron ionization mass spectrometry (EI‐MS), ultraviolet laserdesorption/ionization‐time‐of‐flight‐mass spectrometry (UV‐LDI‐TOF‐MS) and electrospray ionization‐time‐of‐flight‐mass spectrometry (ESI‐TOF‐MS)] as well as by thin layer chromatography analysis (TLC), electronic spectroscopy (UV‐absorption, fluorescence emission and excitation spectroscopy) and 1H nuclear magnetic resonance spectroscopy (1H‐NMR). In general, all compounds, except for CHC and SA, remained unchanged after fusion. CHC showed loss of CO2, yielding the trans‐/cis‐4‐hydroxyphenylacrilonitrile mixture. This mixture was unambiguously characterized by MS and 1H‐NMR spectroscopy, and its sublimation capability was demonstrated. These results explain the well‐known cluster formation, fading (vanishing) and further recovering of CHC when used as a matrix in UV‐MALDI‐MS. Commercial SA (SA 98%; trans‐SA/cis‐SA 5 : 1) showed mainly cis‐ to‐trans thermal isomerization and, with very poor yield, loss of CO2, yielding (3′,5′‐dimethoxy‐4′‐hydroxyphenyl)‐1‐ethene as the decarboxilated product. These thermal conversions would not drastically affect its behavior as a UV‐MALDI matrix as happens in the case of CHC. Complementary studies of the photochemical stability of these matrices in solid state were also conducted. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
The mononuclear complex Pd(1‐TosC‐N3)2Cl2 (2) containing 1‐(p‐toluenesulfonyl)cytosine (1) as a ligand, as well as dinuclear complexes Pd2(1‐TosC?N3,N4)4 (3) and Pd2(1‐TosC?N3,N4)2DMSO2Cl2 (4) containing the ligand anion (1‐TosC?), was mass analyzed by electrospray ionization ion trap MS/MS and high resolution MS. Complexes 3 and 4 were obtained by recrystallization of 2 from DMF and DMSO, respectively. The behavior of complex 2 in different solutions was monitored by electrospray ionization mass spectrometry (ESI‐MS). Under the applied ESI‐MS conditions, complex 2 in methanol reorganized itself dominantly as new complex 3 and the solvent did not coordinate the formed species. In H2O/DMSO, CH3CN/DMSO and CH3OH/DMSO solutions, complex 2 formed several new species with solvent molecules involved in their structure, e.g. complex 4 was formed as the major product. The newly formed species were also examined by LC‐MS‐DAD, confirming the solvent induced reorganization and the solution instability of complex 2. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
1,2-(1-Acridin-10'-yl-2-aza-2-methylprop-1,3-ylene)fullerene was synthesized firstly and characterized by UV-Vis, ^1H NMR, ^13C NMR and electrospray ionization mass spectroscopy, which is capable of forming a stable complex with zinc tetraphenylporphyrin via the axial ligation. The steady state fluorescence studies show efficient quenching of the zinc tetraphenylporphyrin emission upon axial coordination of acridine attached to C60.  相似文献   

4.
Pd‐mediated Negishi cross‐coupling reactions were studied by a combination of kinetic measurements, electrospray‐ionization (ESI) mass spectrometry, 31P NMR and UV/Vis spectroscopy. The kinetic measurements point to a rate‐determining oxidative addition. Surprisingly, this step seems to involve not only the Pd catalyst and the aryl halide substrate, but also the organozinc reagent. In this context, the ESI‐mass spectrometric observation of heterobimetallic Pd–Zn complexes [L2PdZnR]+ (L=S‐PHOS, R=Bu, Ph, Bn) is particularly revealing. The inferred presence of these and related neutral complexes with a direct Pd–Zn interaction in solution explains how the organozinc reagent can modulate the reactivity of the Pd catalyst. Previous theoretical calculations by González‐Pérez et al. (Organometallics­ 2012 , 31, 2053) suggest that the complexation by the organozinc reagent lowers the activity of the Pd catalyst. Presumably, a similar effect also causes the rate decrease observed upon addition of ZnBr2. In contrast, added LiBr apparently counteracts the formation of Pd–Zn complexes and restores the high activity of the Pd catalyst. At longer reaction times, deactivation processes due to degradation of the S‐PHOS ligand and aggregation of the Pd catalyst come into play, thus further contributing to the appreciable complexity of the title reaction.  相似文献   

5.
A series of triarylamine‐containing tricarbonyl rhenium(I) complexes, [BrRe(CO)3(N^N)] (N^N=5,5′‐bis(N,N‐diaryl‐4‐[ethen‐1‐yl]‐aniline)‐2,2′‐bipyridine), has been designed and synthesized by introducing a rhenium(I) metal center into a donor‐π‐acceptor‐π‐donor structure. All of the complexes showed an intense broad structureless emission band in dichloromethane at around 680–708 nm, which originated from an excited state of intraligand charge transfer (3ILCT) character from the triarylamine to the bipyridine moiety. Upon introduction of the bulky and electron‐donating pentaphenylbenzene units attached to the aniline groups, the emission bands were found to be red shifted. The nanosecond transient absorption spectra of two selected complexes were studied, which were suggestive of the formation of an initial charge‐separated state. Computational studies have been performed to provide further insight into the origin of the absorption and emission. One of the rhenium(I) complexes has been utilized in the fabrication of organic light‐emitting diodes (OLEDs), representing the first example of the realization of deep red to near‐infrared rhenium(I)‐based OLEDs with an emission extending up to 800 nm.  相似文献   

6.
Gas‐phase experiments are used to probe the intramolecular scrambling of aryl groups between palladium and phosphorus in organopalladium complexes, [ArPd(PPh3)2]+, generated by means of electrospray ionization (ESI). To this aim, ESI mass spectrometry, including tandem mass spectrometric experiments, were carried out on deuterated, non‐deuterated, and substituted [ArPd(PPh3)2]+ complexes. The fragment ions obtained from the deuterated parent ions clearly show the occurrence of intramolecular scrambling between the aryl group bound to palladium and the phenyl groups of the phosphine in the gas phase. Fragmentation pathways, supported by a statistical model, are proposed to explain these migrations and the implications for the condensed‐phase chemistry are probed experimentally by using ESI mass spectrometry.  相似文献   

7.
Probe electrospray ionization (PESI) is a modified version of the electrospray ionization (ESI), where the capillary for sampling and spraying is replaced by a solid needle. High tolerance to salts and direct ambient sampling are major advantages of PESI compared with conventional ESI. In this study, PESI‐MS was used to monitor some biological and chemical reactions in real‐time, such as acid‐induced protein denaturation, hydrogen/deuterium exchange (HDX) of peptides, and Schiff base formation. By using PESI‐MS, time‐resolved mass spectra and ion chromatograms can be obtained reproducibly. Real‐time PESI‐MS monitoring can give direct and detailed information on each chemical species taking part in reactions, and this is valuable for a better understanding of the whole reaction process and for the optimization of reaction parameters. PESI‐MS can be considered as a potential tool for real‐time reaction monitoring due to its simplicity in instrumental setup, direct sampling with minimum sample preparation and low sample consumption. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
The gas‐phase synthesis of hydrodiphenylcyclopropenylium from alkali‐cationized α,α′‐dibromodibenzyl ketone (1) via nonclassical Lewis‐acid‐induced Favorskii rearrangement has been studied by electrospray ionization/tandem mass spectrometry (ESI‐MS/MS) and theoretical methods, showing that cations [1–Br]+ by debromination from 1 and 1 · M+(M = Li or Na) by alkali‐metal cationization of 1 could convert into the protonated diphenylcyclopropenone 2 · H+ by collision‐induced dissociation in the gas phase. A concerted mechanism for the Lewis‐acid‐induced Favorskii rearrangement from alkali‐metal‐cationized α,α′‐dibromodibenzyl ketone was proposed and studied, based on mass spectrometric results and theoretical methods. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
A highly sensitive and selective on‐line two‐dimensional reversed‐phase liquid chromatography/electrospray ionization–tandem mass spectrometry (2D‐LC‐ESI/MS/MS) method was developed and validated to determine rifaximin in rat serum by direct injection. The 2D‐LC‐ESI/MS/MS system consisted of a restricted access media column for trapping proteins as the first dimension and a Waters C18 column as second dimension using 0.1% aqueous acetic acid:acetonitrile as mobile phase in a gradient elution mode. Rifampacin was used as an internal standard. The linear dynamic range was 0.5–10 ng/mL (r2 > 0.998). Acceptable precision and accuracy were obtained over the calibration range. The assay was successfully used in analysis of rat serum to support pharmacokinetic studies. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
We have investigated gas‐phase fragmentation reactions of protonated benzofuran neolignans (BNs) and dihydrobenzofuran neolignans (DBNs) by accurate‐mass electrospray ionization tandem and multiple‐stage (MSn) mass spectrometry combined with thermochemical data estimated by Computational Chemistry. Most of the protonated compounds fragment into product ions B ([M + H–MeOH]+), C ([ B –MeOH]+), D ([ C –CO]+), and E ([ D –CO]+) upon collision‐induced dissociation (CID). However, we identified a series of diagnostic ions and associated them with specific structural features. In the case of compounds displaying an acetoxy group at C‐4, product ion C produces diagnostic ions K ([ C –C2H2O]+), L ([ K –CO]+), and P ([ L –CO]+). Formation of product ions H ([ D –H2O]+) and M ([ H –CO]+) is associated with the hydroxyl group at C‐3 and C‐3′, whereas product ions N ([ D –MeOH]+) and O ([ N –MeOH]+) indicate a methoxyl group at the same positions. Finally, product ions F ([ A –C2H2O]+), Q ([ A –C3H6O2]+), I ([ A –C6H6O]+), and J ([ I –MeOH]+) for DBNs and product ion G ([ B –C2H2O]+) for BNs diagnose a saturated bond between C‐7′ and C‐8′. We used these structure‐fragmentation relationships in combination with deuterium exchange experiments, MSn data, and Computational Chemistry to elucidate the gas‐phase fragmentation pathways of these compounds. These results could help to elucidate DBN and BN metabolites in in vivo and in vitro studies on the basis of electrospray ionization ESI‐CID‐MS/MS data only.  相似文献   

11.
Palladium(II) complexes of 2‐(2′‐pyridyl)quinoline (PQ), namely [PdX2(PQ)] (X = Br?, I?, N3?, NO2?, SCN?, acac) and [PdCl(NO3)(PQ)] have been synthesized via substitution reactions of [PdCl2(PQ)] with an excess of sodium salts and acetylacetone. The complexes have been characterized by elemental analysis, conductivity measurements, IR, 1H and 13C NMR spectroscopy. Selected complexes have been further characterized using electrospray ionization (ESI) and ion trap mass spectroscopy (ITMS). Some complexes are found to catalyze the rapid air oxidation of α‐olefins under Wacker oxidation. The chlorohydrin products are produced in good to excellent yields while oxidation products are obtained in low yields. The [PdCl2(PQ)] complex is found to have the highest catalytic activity.  相似文献   

12.
电喷雾质谱被应用于分辨2-氨基-1,3-恶嗪及六氢化-4-苯基-吡喃[2,3-d]嘧啶-2-酮的杂环结构。两类化合物均为三组份反应的产物,且其杂环的结构很难用NMR判断。实验首次系统研究了两类化合物的质谱学行为(包括氘代实验和高分辨质谱研究),发现前者在CID实验中丢失CH2N2和HCNO,而后者为直接丢失尿素。这些特征丢失为该类衍生物的结构判断,尤其是高通量的合成产物分析提供了重要的依据。  相似文献   

13.
Spin‐labeled nitroxide derivatives of podophyllotoxin had better antitumor activity and less toxicity than that of the parent compounds. However, the 2‐H configurations of these spin‐labeled derivatives cannot be determined by nuclear magnetic resonance (NMR) methods. In the present paper, a high‐performance liquid chromatography‐diode array detection (HPLC‐DAD) and a high‐performance liquid chromatography‐electrospray ionization tandem mass spectrometry (HPLC‐ESI/MS/MS) method were developed and validated for the separation, identification of four pairs of diastereoisomers of spin‐labeled derivatives of podophyllotoxin at C‐2 position. In the HPLC‐ESI/MS spectra, each pair of diastereoisomers of the spin‐labeled derivatives in the mixture was directly confirmed and identified by [M+H]+ ions and ion ratios of relative abundance of [M‐ROH+H]+ (ion 397) to [M+H]+. When the [M‐ROH+H]+ ions (at m/z 397) were selected as the precursor ions to perform the MS/MS product ion scan. The product ions at m/z 313, 282, and 229 were the common diagnostic ions. The ion ratios of relative abundance of the [M‐ROH+H]+ (ion 397) to [M+H]+, [A+H]+ (ion 313) to [M‐ROH+H]+, [A+H‐OCH3]+ (ion 282) to [M‐ROH+H]+ and [M‐ROH‐ArH+H]+ (ion 229) to [M‐ROH+H]+ of each pair of diastereoisomers of the derivatives specifically exhibited a stereochemical effect. Thus, by using identical chromatographic conditions, the combination of DAD and MS/MS data permitted the separation and identification of the four pairs of diastereoisomers of spin‐labeled derivatives of podophyllotoxin at C‐2 in the mixture.  相似文献   

14.
The complexation of the natural antioxidants α‐lipoic acid (ALA) and its reduced form dihydrolipoic acid (DHLA) with Hg2+ was investigated by a recently proposed differential pulse voltammetric (DPV) method using the rotating Au‐disk electrode. Complexation processes are proposed from the multivariate curve resolution by alternating least squares (MCR‐ALS) analysis of DPV titration data. Main complexes were both 1 : 1 Hg : ALA and Hg : DHLA, although the formation of 1 : 2 complexes can be also deduced. ALA and DHLA show different Hg2+‐binding patterns at different pH. Voltammetric findings are completed with the data obtained by electrospray ionization mass‐spectrometry (ESI‐MS), especially in negative mode.  相似文献   

15.
Multiply charged ions from electrospray ionization (ESI) were observed for ruthenium-bidentate ligand complexes, such as [RuL2B]X2 and [(RuL2)2B]X4, where L is 2,2′-bipyridine, B are tetradentate ligands of 2,2′-bis(2′-pyridyl)bibenzimidazole and 2,6-bis(2′-pyridyl)benzodiimidazole, bidentate ligand of 2-(2′-pyridyl)benzimidazole and related compounds and X is CIO4- or CI-. ESI mass spectra showed a simple mass pattern for easy structural assignment and detecting impurities. The mass spectra for binuclear complexes provide a charge state distribution ranging from 4+ to 2+ for Ru(II)—Ru(II) compounds and 5+ to 2+ for Ru(II)—Rh(III) compounds. It was found that different multiply charged ions are generated by loss of counterions and by protonation/deprotonation at the proton site of ligands B. The abundances of these ions are qualitatively explained in terms of the acidity of metal complexes depending on the bridging ligand structures and the charge of the metal ions. Ions produced by removal of ligands were hardly observed.  相似文献   

16.
An extensive study by matrix‐assisted laser desorption/ionization time‐of‐flight (MALDI‐TOF) mass spectrometry (MS) of some first‐generation and second‐generation lanthanide(III)‐cored poly(phenylenevinylene) dendrimers is described. The complexes were obtained by self‐assembly of suitably functionalized carboxylate dendrons around the lanthanide ion (La3+, Er3+). Fourier transform infrared (FT‐IR) spectroscopy gave reasonable evidence for the proposed structures. However, MS was used to ascertain unequivocally the complex formation. The most reliable results were found in the negative reflector mode, using 2‐[(2E)‐3‐(4‐tert‐butylphenyl)‐2‐methylprop‐2‐enylidene]malononitrile (DCTB) as matrix. Well‐defined and highly resolved base peaks corresponding to negative ions of [Gn4La]? and [Gn4Er]? were found in all cases, with an excellent match between the theoretical and observed isotope distributions. However, the 3 : 1 stoichiometry used in the synthesis guarantees an empirical formula Gn3Ln for the complexes. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
The photophysical and photochemical properties of (OC‐6‐33)‐(2,2′‐bipyridine‐κN1,κN1′)tricarbonyl(9,10‐dihydro‐9,10‐dioxoanthracene‐2‐carboxylato‐κO)rhenium (fac‐[ReI(aq‐2‐CO2)(2,2′‐bipy)(CO)3]) were investigated and compared to those of the free ligand 9,10‐dihydro‐9,10‐dioxoanthracene‐2‐carboxylate (=anthraquinone‐2‐carboxylate) and other carboxylato complexes containing the (2,2′‐bipyridine)tricarbonylrhenium ([Re(2,2′‐bipy)(CO)3]) moiety. Flash and steady‐state irradiations of the anthraquinone‐derived ligand (λexc 337 or 351 nm) and of its complex reveal that the photophysics of the latter is dominated by processes initiated in the Re‐to‐(2,2′‐bipyridine) charge‐transfer excited state and 2,2′‐bipyridine‐ and (anthraquinone‐2‐carboxylato)‐centered intraligand excited states. In the reductive quenching by N,N‐diethylethanamine (TEA) or 2,2′,2″‐nitrilotris[ethanol] TEOA, the reactive states are the 2,2′‐bipyridine‐centered and/or the charge‐transfer excited states. The species with a reduced anthraquinone moiety is formed by the following intramolecular electron transfer, after the redox quenching of the excited state: [ReI(aq−2−CO2)(2,2′‐bipy.)(CO)3]⇌[ReI(aq−2−CO2.)(2,2′‐bipy)(CO)3] The photophysics, particularly the absence of a ReI‐to‐anthraquinone charge‐transfer excited state photochemistry, is discussed in terms of the electrochemical and photochemical results.  相似文献   

18.
Singlet molecular oxygen (1O2) is generated in biological systems and reacts with different biomolecules. Proteins are a major target for 1O2, and His, Tyr, Met, Cys, and Trp are oxidized at physiological pH. In the present study, the modification of lysozyme protein by 1O2 was investigated using mass spectrometry approaches. The experimental findings showed methionine, histidine, and tryptophan oxidation. The experiments were achieved using [18O]‐labeled 1O2 released from thermolabile endoperoxides in association with nano‐scale liquid chromatography coupled to electrospray ionization mass spectrometry. The structural characterization by nLC‐MS/MS of the amino acids in the tryptic peptides of the proteins showed addition of [18O]‐labeling atoms in different amino acids.  相似文献   

19.
The sensitivity of detection of uric acid (H2U) in positive ion mode electrospray ionization mass spectrometry (ESI MS) was enhanced by uric acid oxidation during electrospray ionization. With a carrier solution of pH 6.3>pKa1=5.4 of H2U, protonated unoxidized uric acid [H2U+H]+ (m/z 169) was detected together with the protonated uric acid dimer [2H2U+H]+ (m/z 337). The dimer likely forms by 1e? oxidation of urate (HU?) followed by rapid radical dimerization. A covalent structure of the dimer was verified by H/D exchange experiments. Efficiency of 2e?, 2H+ oxidation of uric acid is low during ESI in pH 6.3 carrier solution and improves when a low on‐line electrochemical cell voltage is floated on the high voltage of the ES in on‐line electrochemistry ESI MS (EC/ESI MS). The intensity of the uric acid dimer decreases with an increase in the low applied voltage. In a carrier solution with 0.1 M KOH, pH 12.7>pKa2=9.8 of H2U, allantoin (Allnt) (MW 158.04), the final 2e?, 2H+ oxidation product of uric acid, was detected as a potassium complex [K(Allnt)+K]+ (m/z 235) and the [2H2U+H]+ dimer was not detected. In direct ESI MS analysis of 1000‐fold diluted urine [NaHU+H]+ (pKsp NaHU=4.6) was detected in 40/60 (vol%) water/methanol, 1 mM NH4Ac, pH ca. 6.3 carrier solution. A new configuration of the ESI MS instrument with a cone‐shaped capillary inlet significantly enhanced sensitivity in ESI and EC/ESI MS measurements of uric acid.  相似文献   

20.
The oxidation behavior of DNA and RNA nucleotides is studied by an on‐line set‐up consisting of an electrochemical thin‐layer cell (EC) directly coupled to electrospray ionization mass spectrometry (ESI‐MS). This set‐up allows the generation of nucleotide oxidation products in the electrochemical cell at increasing potentials. Moreover, the products are determined directly, without isolation or derivatization steps, by electrospray ionization time of flight mass spectrometry (ESI‐ToF/MS). The dependence of the mass spectra on the applied potential is displayed as ‘mass voltammograms’. An advanced set‐up, consisting of the electrochemical cell coupled to electrospray ionization tandem mass spectrometry (EC/ESI‐MS/MS) allows further structure elucidation based on fragmentation experiments. The electrochemical conversion is performed using a boron doped diamond (BDD) working electrode, which is known to generate hydroxyl radicals at high potentials. The capability of the EC‐MS system to generate highly relevant oxidation products which also occur upon oxidative damage in vivo is demonstrated in this study by the formation of well known biomarkers for DNA damage, including 2′‐deoxy‐8‐oxo‐guanosine 5′‐monophosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号