首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ion-molecule reactions of dimethyl ether ions CH3OCH3 + and (CH3OCH3)H+, and four- to seven-membered ring lactams with methyl substituents in various positions were characterized by using a quadrupole ion trap mass spectrometer and a triple-quadrupole mass spectrometer. In both instruments, the lactams were protonated by dimethyl ether ions and formed various combinations of [M + 13] +, [M + 15] +, and [M + 45] + adduct ions, as well as unusual [M + 3] + and [M + 16] + adduct ions. An additional [M + 47] + adduct ion was formed in the conventional chemical ionization source of the triple-quadrupole mass spectrometer. The product ions were isolated and collisionally activated in the quadrupole ion trap to understand formation pathways, structures, and characteristic dissociation pathways. Sequential activation experiments were performed to elucidate fragment ion structures and stepwise dissociation sequences. Protonated lactams dissociate by loss of water, ammonia, or methylamine; ammonia and carbon monoxide; and water and ammonia or methylamine. The [M + 16] + products, which are identified as protonated lactone structures, are only formed by those lactams that do not have an N-methyl substituent. The ion-molecule reactions of dimethyl ether ions with lactams were compared with those of analogous amides and lactones.  相似文献   

2.
Under electron impact, 3-aryl-4-hydroxyisoquinolines form [M – H]+, [M – CO]+ and [M – H – CO]+ ions with a subsequent elimination of HCN or CH3CN. A cyclic structure for the [M – H]+ ion is suggested. The primary act of fragmentation of the corresponding methyle ether derivatives is the loss of CH3?, as well as H?; the further fragmentatio is similar to that described above. It has been established that the unusual [M – H]+, [M – OH]+ and [M – CH5?]+ ions are formed when 8 fragments. Fragmentation schemes for all compounds are proposed based upon high resolution mass spectra and deuterated analogues.  相似文献   

3.
The aim of this study was to investigate the fragmentation behavior induced by low‐energy collision‐induced dissociation (LE‐CID) of four selected antioxidants applied in lubricants, by two different types of ion trap mass spectrometers: a three‐dimensional ion trap (3D‐IT) and a linear IT (LIT) Orbitrap MS. Two sterically hindered phenols and two aromatic amines were selected as model compounds representing different antioxidant classes and were characterized by positive‐ion electrospray ionization (ESI) and LE‐CID. Various types of molecular ions (e.g. [M]+?, [M + H]+, [M + NH4]+ or [M + Na]+) were used as precursor ions generating a significant number of structurally relevant product ions. Furthermore, the phenolic compounds were analyzed by negative‐ion ESI. For both IT types applied for fragmentation, the antioxidants exhibited the same unusual LE‐CID behavior: (1) they formed stable radical product ions and (2) C? C bond cleavages of aliphatic substituents were observed and their respective cleavage sites depended on the precursor ion selected. This fragmentation provided information on the type of structural isomer usually not obtainable for branched aliphatic substituents utilizing LE‐CID. Comparing the two instruments, the main benefit of applying the LIT‐Orbitrap was direct access to elemental composition of product ions enabling unambiguous interpretation of fragmentation trees not obtainable by the 3D‐IT device (e.g. loss of isobaric neutrals). It should be emphasized that the types of product ions formed do not depend on the type of IT analyzer applied. For characterizing degradation products of antioxidants, the LIT‐Orbitrap hybrid system, allowing the determination of accurate m/z values for product ions, is the method of choice. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Oleanane‐type triterpene saponins (OTS) are major active ingredients in Glycyrrhiza uralensis. In this work, a rapid‐resolution liquid chromatography with time‐of‐flight mass spectrometry (RRLC/TOF‐MS) method has been developed to characterize and identify OTS from G. uralensis. The major diagnostic ions and fragmentation pathways from thirteen OTS have been characterized for the first time. At a low fragmentor voltage of 120 V in positive ion mode, the precursor ion [M + H]+ or/and [M + Na]+ was obtained for accurate determination of molecular formula. When the fragmentor voltage was increased to 425 V, abundant characteristic fragment ions were observed for structural characterization. Neutral losses of sugar moieties, such as glucuronic acid (GlcA, 176 Da), glucose (Glc, 162 Da) and rhamnose (Rha, 146 Da), were commonly observed in the MS spectra for prediction of the sugar number and sequences. Other typical losses included AcOH (60 Da), CH2O (30 Da), 2 × H2O (2 × 18 Da) and HCOOH (46 Da) from [Aglycone + H–H2O]+ (named [B]+), corresponding to the presence of a C22‐acetyl group, C24‐hydroxyl group, C22‐hydroxyl group or C30‐carboxyl group on the aglycone moiety, respectively. In particular, characteristic ring cleavages of the aglycone moieties on A‐ and B‐rings were observed. Based on the fragmentation patterns of reference compounds, nineteen OTS have been identified in an extract of G. uralensis, thirteen of which were unambiguously identified and the other six were tentatively assigned. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Low molecular weight polyisobutylenes (PIB) with chlorine, olefin and succinic acid end‐groups were studied using direct analysis in real time mass spectrometry (DART‐MS). To facilitate the adduct ion formation under DART conditions, NH4Cl as an auxiliary reagent was deposited onto the PIB surface. It was found that chlorinated adduct ions of olefin and chlorine telechelic PIBs, i.e. [M + Cl]? up to m/z 1100, and the deprotonated polyisobutylene succinic acid [M? H]? were formed as observed in the negative ion mode. In the positive ion mode formation of [M + NH4]+, adduct ions were detected. In the tandem mass (MS/MS) spectra of [M + Cl]?, product ions were absent, suggesting a simple dissociation of the precursor [M + Cl]? into a Cl? ion and a neutral M without fragmentation of the PIB backbones. However, structurally important product ions were produced from the corresponding [M + NH4]+ ions, allowing us to obtain valuable information on the arm‐length distributions of the PIBs containing aromatic initiator moiety. In addition, a model was developed to interpret the oligomer distributions and the number average molecular weights observed in DART‐MS for PIBs and other polymers of low molecular weight. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
The fragmentation pathways of protonated imine resveratrol analogues in the gas‐phase were investigated by electrospray ionization–tandem mass spectrometry. Benzyl cations were formed in the imine resveratrol analogues that had an ortho‐hydroxyl group on the benzene ring A. The specific elimination of the quinomethane neutral, CH2 = C6H4 = O, from the two isomeric ions [M1 + H]+ and [M3 + H]+ via the corresponding ion–neutral complexes was observed. The fragmentation pathway for the related meta‐isomer, ion [M2 + H]+ and the other congeners was not observed. Accurate mass measurements and additional experiments carried out with a chlorinated analogue and the trideuterated isotopolog of M1 supported the overall interpretation of the fragmentation phenomena observed. It is very helpful for understanding the intriguing roles of ortho‐hydroxyl effect and ion–neutral complexes in fragmentation reactions and enriching the knowledge of the gas‐phase chemistry of the benzyl cation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Chemical ionization mass spectra of several ethers obtained with He/(CH3)4Si mixtures as the reagent gases contain abundant [M + 73]+ adduct ions which identify the relative molecular mass. For the di-n-alkyl ethers, these [M + 73]+ ions are formed by sample ion/sample molecule reactions of the fragment ions, [M + 73 ? CnH2n]+ and [M + 73 ? 2CnH2n]+. Small amounts of [M + H]+ ions are also formed, predominantly by proton transfer reactions of the [M + 73 ? 2CnH2n]+ or [(CH3)3SiOH2]+ ions with the ethers. The di-s-alkyl ethers give no [M + 73] + ions, but do give [M + H]+ ions, which allow the determination of the relative molecular mass. These [M + H]+ ions result primarily from proton transfer reactions from the dominant fragment ion, [(CH3)3SiOH2]+ with the ether. Methyl phenyl ether gives only [M + 73]+ adduct ions, by a bimolecular addition of the trimethylsilyl ion to the ether, not by the two-step process found for the di-n-alkyl ethers. Ethyl phenyl ether gives [M + 73]+ by both the two-step process and the bimolecular addition. Although the mass spectra of the alkyl etherr are temperature-dependent, the sensitivities of the di-alkyl ethers and ethyl phenyl ether are independent of temperature. However, the sensitivity for methyl phenyl ether decreases significantly with increasing temperature.  相似文献   

8.
The electron impact (EI) ionization-induced fragmentation pathways of the new 1,9-bis(dimethylamino) phenalenium cation [1]+ were investigated. The peri-dimethylamino substituents of [1]+ are incorporated in a trimethine cyanine substructure and show strong steric interactions. A mechanism is proposed for the unusual elimination of CH3N?CH2, HN(CH3)2 and (CH3)3N from [1]+ and for the accompanying cyclizations to heterocyclic ions: prior to fragmentation, the intact cation [1]+ rearranges, by reciprocal CH3 and H transfers, to new isomeric cations which decompose subsequently in a characteristic way. A wealth of consistent information on dissociation pathways and fragment structures is provided by collision-induced dissociation tandem mass spectra, collision-induced dissociation mass-analysed ion kinetic energy spectra and exact mass measurements of the salt cation and of its primary fragment ions. The liquid secondary ion mass spectrum of [1]+ is very similar to its EI mass spectrum.  相似文献   

9.
An ion–neutral complex is a non-covalently bonded aggregate of an ion with one or more neutral molecules in which at least one of the partners rotates freely (or nearly so) in all directions. A density-of-states model is described, which calculates the proportion of ion–neutral complex formation that ought to accompany simple bond cleavages of molecular ions. Application of this model to the published mass spectrum of acetamide predicts the occurrence of ions that have not hitherto been reported. Relative intensities on the order of 0.1 (where the abundance of the most intense fragment ion = 1) ere predicted for [M – HO]+ and [M – CH4]+˙ ions, which have the same nominal masses as the prominent [M – NH3]+˙ and [M – NH2]+ fragments. High-resolution mass spectrometric experiments confirm the presence of the predicted fragment ions. The [M – HO]+ and [M – CH4]+˙ fragments were observed with relative abundances of 0.02 and 0.04, respectively. Differences between theory and experiment may be ascribed to effects of competing distonic ion pathways.  相似文献   

10.
Four pairs of positional isomers of ureidopeptides, FmocNH‐CH(R1)‐φ(NH‐CO‐NH)‐CH(R2)‐OY and FmocNH‐CH(R2)‐φ(NH‐CO‐NH)‐CH(R1)‐OY (Fmoc = [(9‐fluorenyl methyl)oxy]carbonyl; R1 = H, alkyl; R2 = alkyl, H and Y = CH3/H), have been characterized and differentiated by both positive and negative ion electrospray ionization (ESI) ion‐trap tandem mass spectrometry (MS/MS). The major fragmentation noticed in MS/MS of all these compounds is due to ? N? CH(R)? N? bond cleavage to form the characteristic N‐ and C‐terminus fragment ions. The protonated ureidopeptide acids derived from glycine at the N‐terminus form protonated (9H‐fluoren‐9‐yl)methyl carbamate ion at m/z 240 which is absent for the corresponding esters. Another interesting fragmentation noticed in ureidopeptides derived from glycine at the N‐terminus is an unusual loss of 61 units from an intermediate fragment ion FmocNH = CH2+ (m/z 252). A mechanism involving an ion‐neutral complex and a direct loss of NH3 and CO2 is proposed for this process. Whereas ureidopeptides derived from alanine, leucine and phenylalanine at the N‐terminus eliminate CO2 followed by corresponding imine to form (9H‐fluoren‐9‐yl)methyl cation (C14H11+) from FmocNH = CHR+. In addition, characteristic immonium ions are also observed. The deprotonated ureidopeptide acids dissociate differently from the protonated ureidopeptides. The [M ? H]? ions of ureidopeptide acids undergo a McLafferty‐type rearrangement followed by the loss of CO2 to form an abundant [M ? H ? Fmoc + H]? which is absent for protonated ureidopeptides. Thus, the present study provides information on mass spectral characterization of ureidopeptides and distinguishes the positional isomers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
A study was carried out on the fragmentation of 12 protonated O,O-dimethyl O-aryl phosphorothionates by tandem quadrupole mass spectrometry. Some of the studied compounds are used in agriculture as pesticides. Energy-resolved and pressure-resolved experiments were performed on the [M + H]+ ions to investigate the dissociation behavior of the ions with various amounts of internal energy. On collisionally activated dissociation, the [M + H]+ ions decompose to yield the [M + H ? CH3OH]+, (CH3O)2PS+ (m/z 125), and (CH3O)2PO+ (m/z 109) ions as major fragments. The ions [M + H ? CH3OH]+ and (CH3O)2PS+ probably arise from the [M + H]+ ions of the O,O-dimethyl O-aryl phosphorothionates with the proton on the sulfur or on the oxygen of the phenoxy group. The origin of the hydroxy proton of the methanol fragment was in many cases, surprisingly, the phenyl group and not the reagent gas. This was confirmed by using deuterated isobutane, C4D10, as reagent gas in Cl. The fragment ions (CH3O)2PO+ and [ZPhS]+ are the results of thiono-thiolo rearrangement reaction. The precursor ion for the ion (CH3O)2PO+ arises from most compounds upon chemical ionization, whereas the precursor ion for the ion [ZPhS]+ arises only from a few compounds upon chemical ionization. The observed fragments imply that several sites carry the extra proton and that these sites get the proton usually upon ionization. The stability order and some characteristics of three protomers of O,O-dimethyl O-phenyl phosphorothionate were investigated by ab initio calculations at the RHF/3-21G* level of theory.  相似文献   

12.
The laser desorption mass spectrometry of the oxocarbon squaric acid (3,4-dihydroxy-3-cyclobutene-1,2-dione) and its salts of the form A2C4O4 (A = cation) is described. Both positive and negative ion spectra were obtained. The positive ion spectrum of the acid is characterized by an ion corresponding to loss of CO from [M + H]+. The negative ion spectrum shows an intense [M ? H]? peak in addition to a dimer species. The alkali salt spectra contain [M + A]+ in the positive mode and [M ? A]? and an intense [C4HO4]? in the negative mode. The smaller alkali salts also have an [M + H]+ adduct ion. Unlike the alkali squarates, the ammonium salt shows ions corresponding to losses of neutrals from the molecular adduct in the positive ion spectrum and a dimer species in the negative ion spectrum. Molecular weight information was obtained in all cases. A (bis) dicyanomethylene derivative of potassium squarate was also studied. Some field desorption mass spectrometry results are presented for comparison.  相似文献   

13.
Loss of H2S is the characteristic Cys side‐chain fragmentation of the [M? H]? anions of Cys‐containing peptides. A combination of experiment and theory suggests that this reaction is initiated from the Cys enolate anion as follows: RNH‐?C(CH2SH)CONHR′ Ø [RNHC(?CH2)CONHR′ (HS?)] Ø [RNHC(?CH2)CO‐HNR′‐H]?+H2S. This process is facile. Calculations at the HF/6‐31G(d)//AM1 level of theory indicate that the initial anion needs only ≥20.1 kcal mol?1 of excess energy to effect loss of H2S. Loss of CH2S is a minor process, RNHCH(CH2SH)CON?‐R′ Ø RNHCH(CH2S?)CONHR′ Ø RNH ?CHCONHR+CH2S, requiring an excess energy of ≥50.2 kcal mol?1. When Cys occupies the C‐terminal end of a peptide, the major fragmentation from the [M–H]? species involves loss of (H2S+CO2). A deuterium‐labelling study suggests that this could either be a charge‐remote reaction (a process which occurs remote from and uninfluenced by the charged centre in the molecule), or an anionic reaction initiated from the C‐terminal CO2? group. These processes have barriers requiring the starting material to have an excess energy of ≥79.6 (charge‐remote) or ≥67.1 (anion‐directed) kcal mol?1, respectively, at the HF/6‐31G(d)//AM1 level of theory. The corresponding losses of CH2O and H2O from the [M? H]? anions of Ser‐containing peptides require ≥35.6 and ≥44.4 kcal mol?1 of excess energy (calculated at the AM1 level of theory), explaining why loss of CH2O is the characteristic side‐chain loss of Ser in the negative ion mode. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
Mass-analysed ion kinetic energy spectrometry (MIKES) with collision-induced dissociation (CID) has been used to study the fragmentation processes of a series of deuterated 2,4,6-trinitrotoluene (TNT) and deuterated 2,4,6-trinitrobenzylchloride (TNTCI) derivatives. Typical fragment ions observed in both groups were due to loss of OR′ (R′ = H or D) and NO. In TNT, additional fragment ibns are due to the loss of R2′O and 3NO2, whilst in TNTCI fragment ions are formed by the loss of OCI and R2′OCI. The TNTCI derivatives did not produce molecular ions. In chemical ionization (Cl) of both groups. MH+ ions were observed, with [M – OR′]+ fragments in TNT and [M – OCI]+ fragments in TNTCI. In negative chemical ionization (NCI) TNT derivatives produced M?′, [M–R′]?, [M–OR′]? and [M–NO]? ions, while TNTCI derivatives produced [M–R]?, [M–Cl]? and [M – NO2]? fragment ions without a molecular ion.  相似文献   

15.
The collisional activation spectra of monosaccharide ions formed by [Li]+, [Na]+ and [K]+ ion attachment under field desorption conditions are reported. It is shown that the elimination of the alkali ions is determined by the alkali ion affinities of the molecules (M) and competes with a fragmentation of M which is almost independent of the alkali ion attached. Correspondingly the alkali ion is predominantly retained in the fragment ions. The usefulness of this method for the differentiation of underivatized isomers is demonstrated.  相似文献   

16.
Alternative losses of the isobaric neutral species CH2O and NO˙ have been assessed for molecular ions of isomeric nitroanisoles fragmenting in the ion source and the first field free region of a double focusing mass spectrometer. Mass analyses of the primary fragment ions indicate that specific loss of CH2O occurs from molecular ions of 2-nitroanisole, while specific loss of NO˙ occurs from molecular ions of 3-nitroanisole. Although the peak due to [M? NO]+ ions is negligible in the mass spectrum of 2-nitroanisole, evidence is presented to show that they are transient intermediates in the consecutive fragmentation for loss of the elements of CNO2 from the molecular ions.  相似文献   

17.
Isoflavone mono‐O‐glycosides were investigated by electrospray ionization tandem mass spectrometry with a quadrupole linear ion trap mass spectrometer in negative ion mode. Isoflavonoids having different positions of glycosylation or methylation were differentiated according to the relative abundances of Y0? and [Y0? H]?? ions generated from the [M ? H]? ion. It is found that the site of glycosyl or methyl group significantly affects relative abundances of the Y0? and [Y0? H]?? ions. In addition, the characteristic ion [Y0? 2H]? was observed in the product ion spectrum of genistein 7‐O‐β‐D ‐glucoside and was also detected, together with the [Y0? CH3]?? and [Y0? H ? CH3]? ions in the product ion spectra of glycitin and 6‐methoxy genistein 7‐O‐β‐D ‐glucoside. The structures of isoflavonoids can be characterized and identified according to the formation of these diagnostic ions. The results obtained from this investigation can promote the rapid identification of isoflavonoids in crude plant extracts. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
A promising replacement for the radioactive sources commonly encountered in ion mobility spectrometers is a miniaturized, energy‐efficient photoionization source that produce the reactant ions via soft X‐radiation (2.8 keV). In order to successfully apply the photoionization source, it is imperative to know the spectrum of reactant ions and the subsequent ionization reactions leading to the detection of analytes. To that end, an ionization chamber based on the photoionization source that reproduces the ionization processes in the ion mobility spectrometer and facilitates efficient transfer of the product ions into a mass spectrometer was developed. Photoionization of pure gasses and gas mixtures containing air, N2, CO2 and N2O and the dopant CH2Cl2 is discussed. The main product ions of photoionization are identified and compared with the spectrum of reactant ions formed by radioactive and corona discharge sources on the basis of literature data. The results suggest that photoionization by soft X‐radiation in the negative mode is more selective than the other sources. In air, adduct ions of O2 with H2O and CO2 were exclusively detected. Traces of CO2 impact the formation of adduct ions of O2 and Cl (upon addition of dopant) and are capable of suppressing them almost completely at high CO2 concentrations. Additionally, the ionization products of four alkyl nitrates (ethylene glycol dinitrate, nitroglycerin, erythritol tetranitrate and pentaerythritol tetranitrate) formed by atmospheric pressure chemical ionization induced by X‐ray photoionization in different gasses (air, N2 and N2O) and dopants (CH2Cl2, C2H5Br and CH3I) are investigated. The experimental studies are complemented by density functional theory calculations of the most important adduct ions of the alkyl nitrates (M) used for their spectrometric identification. In addition to the adduct ions [M + NO3] and [M + Cl], adduct ions such as [M + N2O2], [M + Br] and [M + I] were detected, and their gas‐phase structures and energetics are investigated by density functional theory calculations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
The loss of 60 u from protonated peptide ions containing an arginine residue at the C-terminus has been investigated by means of low energy tandem mass spectrometry. The lowest energy conformation of singly charged bradykinin is thought to involve a salt-bridge structure, which may lead to the formation of two isomeric forms. It is thought that one isomer retains the ionizing proton at the C-terminal end of the peptide, leading to the formation of the [b n?1 + H + OH]+ fragment ion, and the other isomer retains the charge at the N-terminus, leading to the formation of the [M + H ? 60]+ fragment ion. It was found that the formation of the [M + H ? 60]+ ion occurs only from singly charged precursor ions. In addition, the loss of 60 u occurs from peptides in which the charge is localized at the N-terminus. These results indicate that the mechanism of formation of the [M + H ? 60]+ ion may be driven by a charge-remote process.  相似文献   

20.
Explosive detection and identification play an important role in the environmental and forensic sciences. However, accurate identification of isomeric compounds remains a challenging task for current analytical methods. The combination of electrospray multistage mass spectrometry (ESI‐MSn) and high resolution mass spectrometry (HRMS) is a powerful tool for the structure characterization of isomeric compounds. We show herein that resonant ion activation performed in a linear quadrupole ion trap allows the differentiation of dinitrotoluene isomers as well as aminodinitrotoluene isomers. The explosive‐related compounds: 2,4‐dinitrotoluene (2,4‐DNT), 2,6‐dinitrotoluene (2,6‐DNT), 2‐amino‐4,6‐dinitrotoluene (2A‐4,6‐DNT) and 4‐amino‐2,6‐dinitrotoluene (4A‐2,6‐DNT) were analyzed by ESI‐MS in the negative ion mode; they produced mainly deprotonated molecules [M ? H]?. Subsequent low resolution MSn experiments provided support for fragment ion assignments and determination of consecutive dissociation pathways. Resonant activation of deprotonated dinitrotoluene isomers gave different fragment ions according to the position of the nitro and amino groups on the toluene backbone. Fragment ion identification was bolstered by accurate mass measurements performed using Fourier transform ion cyclotron resonance mass spectrometry (FT‐ICR/MS). Notably, unexpected results were found from accurate mass measurements performed at high resolution for 2,6‐DNT where a 30‐Da loss was observed that corresponds to CH2O departure instead of the expected isobaric NO? loss. Moreover, 2,4‐DNT showed a diagnostic fragment ion at m/z 116, allowing the unambiguous distinction between 2,4‐ and 2,6‐DNT isomers. Here, CH2O loss is hindered by the presence of an amino group in both 2A‐4,6‐DNT and 4A‐2,6‐DNT isomers, but nevertheless, these isomers showed significant differences in their fragmentation sequences, thus allowing their differentiation. DFT calculations were also performed to support experimental observations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号