首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Some properties of protein-free natural rubber were investigated by measurements of both water uptake and stress versus strain. The protein-free natural rubber was prepared in latex stage by the novel procedure to remove all proteins from natural rubber with urea and a polar organic solvent in the presence of surfactant, which had been developed in our recent work. First, the condition for the removal of the proteins was investigated in terms of affinity of the polar organic solvents, concentration of the solvents, type of surfactant, and repeating times for washing latex with a centrifuge. Acetone and anionic surfactant were found to be effective for the removal of the proteins. Under an optimum condition, total nitrogen content and amount of extractable proteins of deproteinized natural rubber were 0.000 w/w% and 0.00 μg/ml, respectively. The removal of the proteins from natural rubber was confirmed through Fourier transform infrared (FT-IR) spectroscopy. Water uptake, hydration, and tensile strength of the rubbers were measured by water swelling method, FT-IR spectroscopy, and measurement of stress versus strain, respectively. The water uptake and the hydration were dependent upon the content of the proteins. The tensile strength of the rubbers, which were prepared to be as-cast films without crosslinking, decreased after removal of the all proteins.  相似文献   

2.
High conversion and high grafting efficiency attained by graft copolymerization of styrene onto deproteinized natural rubber (DPNR) was investigated with respect to the molecular weight of grafted polystyrene. The graft copolymerization was performed with tert-butyl hydroperoxide/tetraethylenepentamine as an initiator after deproteinization of natural rubber with urea. Grafted polystyrene was isolated from the resulting graft copolymer by ozonolysis reaction. After the ozonolysis of the graft copolymer of DPNR and polystyrene (DPNR-g-PS), the molecular weight of grafted polystyrene was determined by size exclusion chromatography. Effects of initiator and monomer concentrations were investigated with respect to the molecular weight of the grafted polystyrene, which was found to depend on not only the number of active site generated on the rubber particle but also the feed of styrene. Deactivation and chain transfer of the active sites were attributed to effective amount of styrene used for the graft copolymerization.  相似文献   

3.
Removal of proteins from natural rubber was achieved by incubation of the rubber latex with urea in the presence of a surfactant to prevent the latex‐allergy caused with thin film products. Temperature, pH and time for the incubation were investigated to remove the proteins effectively, in which nitrogen content of the rubber was reduced to 0.02 from 0.38 wt% under the optimum condition. To remove further the proteins, deproteinization of natural rubber was made by incubation of the latex with proteolytic enzyme in the presence of a surfactant followed by incubation with urea. Amount of allergen decreased through the procedure to less than 0.7 μg/ml, which is a small amount of allergen compared to that for the commercial, deproteinized natural rubber. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
Photoreactive particle was prepared by graft copolymerization of 1,9‐nonandioldimethacrylate (NDMA) onto deproteinized natural rubber (DPNR) particles in latex stage. First, NDMA was mixed with α‐cyclodextrin (α‐CD) as a coupling agent to form an inclusion complex to stabilize a carbon–carbon double bond of NDMA as a bifunctional monomer. Second, the inclusion complex was graft‐copolymerized onto natural rubber (NR) in latex stage with potassium persulfate (KPS) as an initiator, after deproteinization with urea in the presence of surfactant. A terminal vinyl group of NDMA was used for the graft copolymerization, while the other remained in the resulting polymer, due to the coupling effect of the α‐CD. The products, after washing α‐CD out, were characterized by FTIR, X‐ray diffraction (XRD), 1H NMR and solid‐state 13C NMR measurements. The amount of residual carbon–carbon double bond after graft copolymerization was investigated in relation to the amount of rubber and reaction temperature. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4111–4118, 2009  相似文献   

5.
The morphology of natural rubber was observed by transmission electron microscopy. Nanomatrix of non‐rubber components such as proteins and phospholipids was found to be inherently formed in natural rubber, in which natural rubber particles of about 0.5 µm in average diameter were dispersed. The nanomatrix of non‐rubber components disappeared after deproteinization of natural rubber with urea. Stress at break of serum rubber was higher than that of deproteinized natural rubber, while strain at break did not change. When the amount of the non‐rubber components increased, the stress at break became significantly dependent upon the amount of non‐rubber components. Viscoelastic properties of natural rubber were also dependent upon the nanomatrix of non‐rubber components. Storage modulus of natural rubber increased significantly, when the amount of the non‐rubber components increased. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Hydrogenation of epoxidized natural rubber (ENR) was performed to introduce hydroxyl group to hydrogenated natural rubber. The ENR was prepared by epoxidation of deproteinized natural rubber (DPNR) with peracetic acid in latex stage. Hydrogenation of epoxidized DPNR (EDPNR) was performed with p-toluenesulfonylhydrazide in p-xylene. The resulting product, hydrogenated EDPNR (HEDPNR), was characterized by nuclear magnetic resonance spectroscopy with various pulse sequences, i.e., two-dimensional correlation spectroscopy, two-dimensional heteronuclear correlation measurements. Carbons linking up to hydroxyl group were assigned to be quaternary and tertiary groups. The HEDPNR was proved to be a polyolefine elastomer through differential scanning calorimetry.  相似文献   

7.
Phenyl‐modified natural rubber was prepared in latex stage by bromination of deproteinized natural rubber followed by Suzuki‐Miyaura cross‐coupling reaction. First, the bromination of natural rubber was carried out using N‐bromosuccinimide in latex stage. The bromine atom content increased as amount of N‐bromosuccinimide increased. Second, the allylic bromine atom was replaced with a phenyl group using phenyl boronic acid in the presence of a palladium catalyst, according to the Suzuki‐Miyaura cross‐coupling reaction in latex stage. The resulting products were characterized by nuclear magnetic resonance (NMR) spectroscopy. Signal at 7.13 ppm was assigned to the phenyl group of the product, while signals at 3.98, 4.14, and 4.44 ppm were assigned to the remaining allylic brominated cis‐1,4‐isoprene units. The estimated phenyl group content and the conversion of the Suzuki‐Miyaura cross‐coupling reaction were 1.32 and 23.7 mol%, respectively. Glass transition temperature (Tg) of deproteinized natural rubber increased from ?62°C to ?46.7°C, when the phenyl group was introduced into the rubber.  相似文献   

8.
Effect of the nanomatrix structure on mechanical properties of natural rubber was investigated in relation to the strain‐induced crystallization. Structure of natural rubber was analyzed through Fourier transform infrared spectroscopy, wide‐angle X‐ray diffraction measurement and transmission electron microscopy. The nanomatrix of the non‐rubber components was found to be inevitably formed in natural rubber, in which natural rubber particles linking to fatty acids were dispersed in the nanomatrix of the proteins and phospholipids. The nanomatrix disappeared after deproteinization of natural rubber with urea. Tensile strength and modulus of natural rubber were reduced by removal of the fatty acids and the proteins, which resulted in disappearance of the nanomatrix structure. The effect of fatty acids on the crystallization of natural rubber in small particles as a dispersoid was proved by tensile test of blend of natural rubber and styrene butadiene rubber. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Hydrogenated deproteinized natural rubber (HDPNR) with nanomatrix structure was prepared through graft‐copolymerization of acrylonitrile and styrene onto HDPNR particle in latex stage. Structural characterization of the resulting materials through nuclear magnetic resonance and Fourier‐transform infrared spectroscopy confirmed that acrylonitrile and styrene were grafted onto HDPNR. The weather resistance, thermal properties, mechanical properties, storage modulus, and morphology of the resulting materials were investigated in comparison with those of HDPNR. The obtained result indicated that the graft‐copolymerization of HDPNR with hydrogenation conversion of 60 mol% attained the highest grafting efficiency. Thermal resistance and storage modulus of HDPNR‐graft‐poly (styrene‐co‐acrylonitrile) (HDPNR‐g‐SAN) were superior compared with those of HDPNR and deproteinized natural rubber. This was attributed to the nanomatrix formed in HDPNR‐g‐SAN, which was confirmed through a transmission electron microscope. Ribbed smoked sheet natural rubber exhibited the outstanding mechanical properties and weather resistance when it was mixed with HDPNR‐g‐SAN.  相似文献   

10.
Modification of natural rubber (NR) via grafting polymerization with maleic anhydride (MA) has received wide attention as it could improve the hydrophilicity of NR and extend its application to a wider application field. However, the grafting efficiency of MA onto NR in either the molten state or solution state is low and is accompanied with undesired high gel content in the grafts. In this work a novel technical route was developed in that a deproteinization operation was conducted before carrying out the grafting process and a differential microemulsion polymerization technique was applied for the grafting reaction. The effects of initiator and monomer concentration, reaction temperature, and reaction time on the grafting efficiency and gel fraction were investigated, and a comparison of the reaction performance was conducted for deproteinized NR (DPNR) and NR. The results indicated that the deproteinization operation could significantly improve the grafting efficiency and reduce the gel content, and a 29% yield of MA grafted onto the rubber backbone could be achieved at a condition of a DPNR:MA:initiator ratio of 85:9:6 (wt%) at 60 °C for 8 h.  相似文献   

11.
Thermoplastic elastomer was prepared from deproteinized natural rubber (DPNR) by graft-copolymerization of styrene, which was performed onto rubber particles of about 1 μm in diameter in latex stage with tert-butyl hydroperoxide/tetraethylenepentamine as an initiator. Suitable initiator concentrations were determined to be 3.3 × 10−2 and 20 × 10−2 mol/kg-rubber for the graft-coplymerization of styrene of 1.5 and 5.5 mol/kg-rubber, respectively, in which conversion and grafting efficiency of styrene were more than 90 mol% and 80 mol%, respectively. The resulting polystyrene, grafted onto the rubber particles, was characterized by size exclusion chromatography after ozonolysis. Morphology of the DPNR grafted with polystyrene (DPNR-graft-PS) was observed by transmission electron microscopy (TEM). Change in morphology after processing the DPNR-graft-PS at 150 °C was associated with change in mechanical properties, i.e. stress at strain of 1 and stress at break. The outstanding mechanical properties, maintained even after processing, were assigned to the thermoplasticity of the DPNR-graft-PS, based on the high conversion and high grafting efficiency.  相似文献   

12.
Blends of polypropylene (PP) and epoxidized natural rubber (ENR) were prepared by an in‐line electron induced reactive processing technique. The mixing was done in a Brabender mixing chamber coupled with an electron accelerator. The effect of sequence of electron treatment on the compatibilization of non‐polar PP and polar ENR was investigated in the presence of triallyl cyanurate (TAC). Finally, the resulting blends were characterized by different techniques, namely, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), tensile tests, and rheological studies. Generation of phase coupling and chemical compatibilization were observed from FTIR analysis. DMA studies showed enhanced high‐temperature modulus (above the glass transition temperature of both components) followed up by lowering in the tan δ peak. Rheological studies showed increase in modulus at low frequencies. Electron treatment and incorporation of rubber phase into PP showed significant effect on the degree of crystallinity of the blends, which was characterized by DSC study. The results obtained from FTIR, DMA, SEM, rheological studies, and tensile tests strongly affirmed that electron induced reactive processing of PP in presence of TAC before adding of ENR performed the best amongst all samples modified with electrons investigated in this study. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Natural rubber (NR) with an in situ nanosilica nanomatrix was characterized in present work. The in situ nanosilica nanomatrix was prepared via graft copolymerization of a silane monomer, vinyltriethoxysilane (VTES), onto deproteinized NR (DPNR) in latex stage using tetrapentamine (TEPA)/tert‐butylhydroperoxide (TBHPO) as initiators. VTES conversion of more than 80% was obtained, and it depended on VTES concentration. The graft copolymer structure was characterized by Fourier transform infrared (FT‐IR), solution‐state proton nuclear magnetic resonance (1H‐NMR), and solid‐state 29Si‐NMR spectroscopy. FT‐IR analysis of the graft copolymer confirmed the formation of in situ silica particles, while solution‐state 1H‐NMR and solid‐state 29Si‐NMR revealed the partial hydrolysis of the ethoxy groups and polycondensation of the silanol groups. The formation of nanosilica particles enhanced thermal and mechanical properties of the graft copolymer. Morphology observations of the in situ nanosilica nanomatrix through scanning electron microscopy (SEM) and transmission electron microscopy (TEM) indicated that the spherical nanosilica particles form a nanomatrix surrounding NR particle. The formation of the nanomatrix was proved to enhance mechanical properties for NR materials.  相似文献   

14.
The formation of clay intercalates with three different kinds of organic ammonium salts, when mixed in the presence of synthetic or natural polyisoprene rubber, has been investigated. X‐ray diffraction and transmission electron microscopy (TEM) experiments have shown that intercalates with organic bilayers, rather than with interdigitated organic monolayers, are obtained only for the ammonium salts presenting two long alkyl chains and only in the presence of the natural rubber (NR). These results have been qualitatively rationalized on the basis of suitable interlayer densities. Both monolayer and bilayer clay intercalates remain stable for short‐term heating procedures at temperatures lower than 250°C. For treatments at higher temperatures, where the decomposition of the organic ammonium salt occurs, both kinds of clay intercalates maintain intralayer crystalline order. However, the decomposition of the organic modifier leads to the formation of pristine and exfoliated clay for the intercalates with organic monolayers and bilayers, respectively. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
Water has attracted significant attention as an alternative solvent for organometallic reactions because it is nontoxic, nonflammable, and inexpensive, and is easily separated from organic products. Organometallic reactions, like the palladium‐catalyzed couplings of organic halides with organoboron compounds (Suzuki) and organotin reagents (Stille), are among the most widely used reactions for the formation of carbon‐carbon bonds. Owing to the discovery of water‐soluble, sulfonated phosphane derivatives and particularly the design of water‐soluble palladium‐catalysts it was possible to import these reactions into aqueous media. Another efficient, metal‐catalyzed, carbon‐carbon bond‐forming process that is nowadays possible in aqueous media is the olefin metathesis. The approaches so far include the use of water‐soluble ruthenium‐catalysts, surfactants and additives, ultrasonication, the introduction of polar quaternary ammonium groups or the incorporation of PEG as a water solubilizing moiety. The last point bears also a great potential for further developments in the removal of ruthenium‐containing byproducts. Additionally, water is the ideal reaction environment for polar, water soluble substrates such as natural product or pharmaceuticals.  相似文献   

16.
Method of quantitative analysis through latex‐state 13C NMR spectroscopy was established for in situ determination of epoxy group content of epoxidized natural rubber in latex stage. The epoxidized natural rubber latex was prepared by epoxidation of deproteinized natural rubber with freshly prepared peracetic acid in latex stage. The resulting epoxidized deproteinized natural rubber (EDPNR) latex was characterized through latex‐state 13C NMR spectroscopy. Chemical shift values of signals of latex‐state 13C NMR spectrum for EDPNR were similar to those of solution‐state 13C NMR spectrum for EDPNR. Resolution of latex‐state 13C NMR spectrum was gradually improved as temperature for the nuclear magnetic resonance (NMR) measurement increased to 70°C. Signal‐to‐noise ratio of latex‐state 13C NMR measurement was similar to that of solution‐state 13C NMR measurement at temperature above 50°C. The epoxy group content determined through latex‐state NMR spectroscopy was proved to be the same as that determined through solution‐state NMR spectroscopy. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

17.
A series of phenyl‐bonded stationary phases with incorporated polar functional groups was subjected to an adsorption investigation. Measurement of acetonitrile and methanol adsorption was obtained using the minor disturbance method. It was observed that adsorption of organic solvent strongly depends on the presence of polar functional groups in the bonded phases that influence the hydrophobicity and polarity of the stationary phase surface. Additionally, relative adsorption of acetonitrile and methanol confirms earlier observations, that the presence of amine and amide groups in the stationary phase changes the relative elution strength of organic solvents. The heterogeneous surface of the stationary phase makes it possible to observe the competitiveness of the water and organic solvent adsorption.  相似文献   

18.
A polar polymethacrylate‐based monolithic column was introduced and evaluated as a hydrophilic interaction CEC stationary phase. The monolithic stationary phase was prepared by in situ copolymerization of a neutral monomer 2‐hydroxyethyl methacrylate and a polar cross‐linker N,N′‐methylene bisacrylamide in a binary porogenic solvent consisting of dodecyl alcohol and toluene. The hydroxyl and amino groups at the surface of the monolithic stationary phase provided polar sites which were responsible for hydrophilic interactions. The composition and proportion of the polymerization mixture was investigated in detail. The mechanical stability and reproducibility of the obtained monolithic column preformed was satisfied. The effects of pH and organic solvent content on the EOF and the separation of amines, nucleosides, and narcotics on the optimized monolithic column were investigated. A typical hydrophilic interaction CEC was observed on the neutral polar stationary phase. The optimized monolithic column can obtain high‐column efficiencies with 62 000–126 000 theoretical plates/m and the RSDs of column‐to‐column (n = 9), run‐to‐run (n = 5), and day‐to‐day (n = 3) reproducibility were less than 6.3%. The calibration curves of these five narcotics exhibited good linearity with R in the range of 0.9959–0.9970 and linear ranges of 1.0–200.0 μg/mL. The detection limits at S/N = 3 were between 0.2 and 1.2 μg/mL. The recoveries of the separation of narcotics on the column were in the range of 84.0–108.6%. The good mechanical stability, reproducibility, and quantitation capacity was suitable for pressure‐assisted CEC applications.  相似文献   

19.
A new magnetic metal–organic framework nanocomposite (CoFe2O4/TMU‐17‐NH2) was prepared via an embedding approach by synthesis of the metal–organic framework crystals in the presence of magnetic cobalt ferrite nanoparticles. We demonstrated that the resulting magnetic nanocomposite can serve as a recyclable nanocatalyst for one‐pot synthesis of bis‐3,4‐dihydropyrimidin‐2(1H)‐one and 3,4‐dihydropyrimidin‐2(1H)‐one derivatives via three‐component reaction of 1,3‐diketone, urea or thiourea and aromatic aldehyde under solvent‐free conditions. CoFe2O4/TMU‐17‐NH2 was characterized using various techniques. The recovery of the nanocomposite was achieved by a simple magnetic decantation and it was reused at least seven times without significant degradation in catalytic activity.  相似文献   

20.
Low‐protein natural rubber (LPNR) and acetone‐extracted natural rubber (AENR) were prepared in solid form by alkaline treatment and acetone extraction to remove proteins and lipids. The content of proteins and lipids along with gel content were characterized by Fourier‐transform infrared spectroscopy (FTIR) and size exclusion chromatography with multiangle light scattering (SEC‐MALS) analysis. It was found that natural rubber (NR) treatment by alkaline hydrolysis or acetone extraction decreased proteins or lipids along with gel content. Also, having less proteins and lipids changed the network structure from macroaggregates to microaggregates. This resulted in inferior plasticity and poor mechanical, rheological, and dynamic properties. Furthermore, decreased strain‐induced crystallization and storage hardening were confirmed by temperature scanning stress relaxation (TSSR), after removal of proteins and lipids. Therefore, protein and lipid contents together with gel content play essential roles in controlling various properties of unvulcanized NR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号