首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite the tremendous usage of HMBC to establish long‐range 1H–13C and 1H–15N heteronuclear correlations, an inherent drawback of the experiment is the indeterminate nature of the nJXH correlations afforded by the experiment. A priori there is no reliable way of determining whether a given nJCH correlation is, for example, via two‐, three‐, or sometimes even four‐bonds. This limitation of the HMBC experiment spurred the development of the ADEQUATE family of NMR experiments that rely on, in the case of 1,1‐ADEQUATE, an out‐and‐back transfer of magnetization via the 1JCC homonuclear coupling constant, which is significantly larger than nJCC (where n = 2–4) couplings in most cases. Hence, the 1,1‐ADEQUATE experiment has generally been assumed to unequivocally provide the equivalent of 2JCH correlations. The recent development of the 1,1‐ and 1,n‐HD‐ADEQUATE experiments that can provide homodecoupling for certain 1JCC and nJCC correlations has increased the sensitivity of the ADEQUATE experiments significantly and can allow acquisition of these data in a fraction of the time required for the original iterations of this pulse sequence. With these gains in sensitivity, however, there occasionally come unanticipated consequences. We have observed that the collapse of proton multiplets, in addition to providing better s/n for the desired 1JCC correlations can facilitate the observation of typically weaker 2JCC correlations across intervening carbonyl resonances in 1,1‐HD‐ADEQUATE spectra. Several examples are shown, with the results supported by the measurement of the 2JCC coupling constants in question using J‐modulated‐HD‐ADEQUATE and DFT calculations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Unsymmetrical and generalized indirect covariance processing methods provide a means of mathematically combining pairs of 2D NMR spectra that share a common frequency domain to facilitate the extraction of correlation information. Previous reports have focused on the combination of HSQC spectra with 1,1‐, 1,n‐, and inverted 1JCC 1,n‐ADEQUATE spectra to afford carbon–carbon correlation spectra that allow the extraction of direct (1JCC), long‐range (nJCC, where n ≥ 2), and 1JCC‐edited long‐range correlation data, respectively. Covariance processing of HMBC and 1,1‐ADEQUATE spectra has also recently been reported, allowing convenient, high‐sensitivity access to nJCC correlation data equivalent to the much lower sensitivity n,1‐ADEQUATE experiment. Furthermore, HMBC‐1,1‐ADEQUATE correlations are observed in the F1 frequency domain at the intrinsic chemical shift of the 13C resonance in question rather than at the double‐quantum frequency of the pair of correlated carbons, as visualized by the n,1, and m,n‐ADEQUATE experiments, greatly simplifying data interpretation. In an extension of previous work, the covariance processing of HMBC and 1,n‐ADEQUATE spectra is now reported. The resulting HMBC‐1,n‐ADEQUATE spectrum affords long‐range carbon–carbon correlation data equivalent to the very low sensitivity m,n‐ADEQUATE experiment. In addition to the significantly higher sensitivity of the covariance calculated spectrum, correlations in the HMBC‐1,n‐ADEQUATE spectrum are again detected at the intrinsic 13C chemical shifts of the correlated carbons rather than at the double‐quantum frequency of the pair of correlated carbons. HMBC‐1,n‐ADEQUATE spectra can provide correlations ranging from diagonal (0JCC or diagonal correlations) to 4JCC under normal circumstances to as much as 6JCC in rare instances. The experiment affords the potential means of establishing the structures of severely proton‐deficient molecules. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
1,1‐ADEQUATE and the related long‐range 1,n‐ and n,1‐ADEQUATE variants were developed to provide an unequivocal means of establishing 2JCH and the equivalent of nJCH correlations where n = 3,4. Whereas the 1,1‐ and 1,n‐ADEQUATE experiments have two simultaneous evolution periods that refocus the chemical shift and afford net single quantum evolution for the carbon spins, the n,1‐variant has a single evolution period that leaves the carbon spin to be observed at the double quantum frequency. The n,1‐ADEQUATE experiment begins with an HMBC‐type nJCH magnetization transfer, which leads to inherently lower sensitivity than the 1,1‐ and 1,n‐ADEQUATE experiments that begin with a 1JCH transfer. These attributes, in tandem, serve to render the n,1‐ADEQUATE experiment less generally applicable and more difficult to interpret than the 1,n‐ADEQUATE experiment, which can in principle afford the same structural information. Unsymmetrical and generalized indirect covariance processing methods can complement and enhance the structural information encoded in combinations of experiments e.g. HSQC‐1,1‐ or ?1,n‐ADEQUATE. Another benefit is that covariance processing methods offer the possibility of mathematically combining a higher sensitivity 2D NMR spectrum with for example 1,1‐ or 1,n‐ADEQUATE to improve access to the information content of lower sensitivity congeners. The covariance spectrum also provides a significant enhancement in the F1 digital resolution. The combination of HMBC and 1,1‐ADEQUATE spectra is shown here using strychnine as a model compound to derive structural information inherent to an n,1‐ADEQUATE spectrum with higher sensitivity and in a more convenient to interpret single quantum presentation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
1,1‐ADEQUATE is a powerful and robust NMR experiment to establish carbon–carbon connectivities using modest sample quantities when cryogenic probe technology is available. Yet potential pitfalls of applying this method are not widely appreciated, such as weak or missing 1JCC correlations in strongly coupled 13C‐13C AB spin systems and unusually large multi‐bond (nJCC) correlations associated with particular functional groups. These large nJCC correlations observed in 1,1‐ADEQUATE spectra could be mistaken for 1JCC correlations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Establishing the carbon skeleton of a molecule greatly facilitates the process of structure elucidation, leaving only heteroatoms to be inserted, heterocyclic rings to be closed, and stereochemical features to be defined. INADEQUATE, and more recently PANACEA, have been the only means of coming close to the goal of totally defining the carbon skeleton of a molecule. Unfortunately, the extremely low sensitivity and prodigious sample requirements of these experiments and the multiple receiver requirement for the latter experiment have severely restricted the usage of these experiments. Proton‐detected ADEQUATE experiments, in contrast, have considerably higher sensitivity and more modest sample requirements. By combining experiments such as 1,1‐ADEQUATE and 1,n‐ADEQUATE with higher sensitivity experiments such as GHSQC through covariance processing, sample requirements can be further reduced with a commensurate improvement in the s/n ratio and F1 resolution of the covariance processed spectrum. We now wish to report the covariance processing of an inverted 1JCC 1,n‐ADEQUATE experiment with a non‐edited GHSQC spectrum to afford a spectrum that can trace the carbon skeleton of a molecule with the exception of correlations between quaternary carbons. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Recently, it has been reported that large nJCC correlations can sometimes be observed in 1,1‐ADEQUATE spectra with significant intensity, which opens the possibility of structural misassignment. In this work, we have focused on pyrimidine‐based compounds, which exhibit multiple bond correlations in the 1,1‐ADEQUATE experiment as a consequence of 3JCC coupling constants greater than 10 Hz. Results are supported by both the experimental measurement of 3JCC coupling constants in question using J‐modulated‐ADEQUATE and density functional theory calculations.  相似文献   

7.
Posaconazole is a structurally complex triazole antifungal agent that, by virtue of its structural complexity, provides a good test molecule for the evaluation of NMR structure elucidation methodologies. Although GHMBC and related long‐range 1H–13C heteronuclear shift correlation techniques are extremely powerful, at the same time, when dealing with unknowns, they can be problematic in that there is no way to readily differentiate adjacent (2 JCH) correlations from longer range correlations, e.g., 3JCH and nJCH, n > 3. The 1,1‐ADEQUATE experiment, in contrast, provides unequivocal experimental access to adjacent carbon–carbon correlation information, albeit with a sensitivity penalty, as the experiment involves an adjacent 13C–13C out‐and‐back magnetization transfer. In part, the sensitivity penalty can be overcome by using unsymmetrical indirect covariance or general indirect covariance processing methods. The application of these methods through the coprocessing of multiplicity‐edited GHSQC and 1,1‐ADEQUATE data to generate an HSQC‐ADEQUATE correlation plot is demonstrated for posaconazole.  相似文献   

8.
Modification of the recently reported 19F-detected 1,1-ADEQUATE experiment that incorporates dual-optimization to selectively invert a wide range of 1JCC correlations in a 1,n-ADEQUATE experiment is reported. Parameters for the dual-optimization segment of the pulse sequence were modified to accommodate the increased size of 1JCC homonuclear coupling constants of poly- and perfluorinated molecules relative to protonated molecules to allow broadband inversion of the 1JCC correlations. The observation and utility of isotope shifts are reported for the first time for 1,1- and 1,n-ADEQUATE correlations.  相似文献   

9.
Coniothyrione is a xanthone‐derived antibiotic reported several years ago by researchers at Merck & Co. Inc. Revision of the position of the chloro substitution was recently proposed on the basis of empirical reinterpretation of the carbon chemical shift data and a hypothetical biosynthetic argument without the acquisition of any new spectral data to support the postulated change in substituent location. The originally published HMBC data lead to an equivocal assignment of the structure and do not provide a solid basis of support for either structure. Neural network 13C chemical shift calculations and density functional theory calculations also led to undifferentiated structures. Definitive confirmation of the structure of coniothyrione based on the acquisition and interpretation of 1,1‐ADEQUATE and inverted 1JCC 1,n‐ADEQUATE data is now reported. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Recent reports have demonstrated the unsymmetrical indirect covariance combination of discretely acquired 2D NMR experiments into spectra that provide an alternative means of accessing the information content of these spectra. The method can be thought of as being analogous to the Fourier transform conversion of time domain data into the more readily interpreted frequency domain. Hyphenated 2D‐NMR spectra such as GHSQC‐TOCSY, when available, provide an investigator with the means of sorting proton‐proton homonuclear connectivity networks as a function of the 13C chemical shift of the carbon directly bound to the proton from which propagation begins. Long‐range heteronuclear chemical shift correlation experiments establish proton‐carbon correlations via heteronuclear coupling pathways, most commonly across three bonds (3JCH), but in more general terms across two (2JCH) to four bonds (4JCH). In many instances 3JCH correlations dominate GHMBC spectra. We demonstrate in this report the improved visualization of 2JCH and 4JCH correlations through the unsymmetrical indirect covariance processing of GHSQC‐TOCSY and GHMBC 2D spectra.  相似文献   

11.
Utilizing 13C‐13C connectivity networks for the assembly of carbon skeletons from HSQC‐ADEQUATE spectra was recently reported. HSQC‐ADEQUATE data retain the resonance multiplicity information of the multiplicity‐edited GHSQC spectrum and afford a significant improvement in the signal‐to‐noise (s/n) ratio relative to the 1,1‐ADEQUATE data used in the calculation of the HSQC‐ADEQUATE spectrum by unsymmetrical indirect covariance (UIC) processing methods. The initial investigation into the computation of HSQC‐ADEQUATE correlation plots utilized overnight acquisition of the 1,1‐ADEQUATE data used for the calculation. In this communication, we report the results of an investigation of the reduction in acquisition time for the 1,1‐ADEQUATE data to take advantage of the s/n gain during the UIC processing to afford the final HSQC‐ADEQUATE correlation plot. Data acquisition times for the 1,1‐ADEQUATE spectrum can be reduced to as little as a few hours, while retaining excellent s/n ratios and all responses contained in spectra computed from overnight data acquisitions. Concatenation of multiplicity‐edited GHSQC and 1,1‐ADEQUATE data also allows the interrogation of submilligram samples with 1,1‐ADEQUATE data when using spectrometers equipped with 1.7‐mm Micro CryoProbes ?. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
We report a novel rare spin correlation experiment termed ADEQUATE with composite refocusing (CR), which is the 1H‐detected version of 2D INADEQUATE CR. ADEQUATE CR begins with a polarization transfer from protons to the attached carbon, followed by 13C–13C double‐quantum (DQ) preparation. Unlike the ADEQUATE class of experiments, 13C DQ coherence is converted after evolution to single‐quantum single transitions (SQ‐STs) by CR. 13C SQ‐ST is then transferred back to the coupled protons by a coherence order selective reconversion. The present sequence produces partial transition selectivity in the 1H dimension as does 1H Indirect detected 13C Low‐Abundance Single‐transition correlation Spectroscopy (HICLASS), thereby mitigating the reduction in sensitivity enhancement because of the presence of homonuclear proton couplings. However, unlike HICLASS (which is an experiment that involves SQ‐TS evolution), no homonuclear zero quantum mixing is required on the 13C channel in the present experiment. Experimental results are demonstrated on a variety of samples, establishing the efficiency of the proposed method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Long-range, two-dimensional heteronuclear shift correlation NMR methods play a pivotal role in the assembly of novel molecular structures. The well-established GHMBC method is a high-sensitivity mainstay technique, affording connectivity information via (n)J(CH) coupling pathways. Unfortunately, there is no simple way of determining the value of n and hence no way of differentiating two-bond from three- and occasionally four-bond correlations. Three-bond correlations, however, generally predominate. Recent work has shown that the unsymmetrical indirect covariance or generalized indirect covariance processing of multiplicity edited GHSQC and 1,1-ADEQUATE spectra provides high-sensitivity access to a (13)C-(13) C connectivity map in the form of an HSQC-1,1-ADEQUATE spectrum. Covariance processing of these data allows the 1,1-ADEQUATE connectivity information to be exploited with the inherent sensitivity of the GHSQC spectrum rather than the intrinsically lower sensitivity of the 1,1-ADEQUATE spectrum itself. Data acquisition times and/or sample size can be substantially reduced when covariance processing is to be employed. In an extension of that work, 1,n-ADEQUATE spectra can likewise be subjected to covariance processing to afford high-sensitivity access to the equivalent of (4)J(CH) GHMBC connectivity information. The method is illustrated using strychnine as a model compound.  相似文献   

14.
Recently, we have introduced the ADEQUATE pulse sequence as a sensitive method to observe 13C,13C correlations in natural products. This kind of experiment suffers from offset‐dependent effects of the 180°(13C) pulses. Here we describe an application of smoothed chirp pulses in the ADEQUATE pulse sequence which allows 13C,13C correlations to be run without any offset dependences. This experiment is called chirp ADEQUATE and was applied to δ‐valerolactone and cholesteryl acetate. This modification will allow a general application of the ADEQUATE pulse sequence. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
An NMR study of ketones 5–12 was undertaken to gain insight into the low electrophilicity of the carbonyl moiety of butenones 9–11. Initial IR studies on compounds 9–12 indicated that there is relatively strong double bond character (and hence low electrophilicity) in the carbonyl of saturated and unsaturated cyclobutyl ketones. The 13C chemical shifts confirm that the carbonyl moiety is highly conjugated with the fused benzene ring in 9, and with the olefinic linkage in 10 and 11. Partial positive charge is distributed away from the carbonyl carbon, which is also expected to lower the electrophilicity of the carbonyl carbon atoms of 9–11. One‐bond carbon–proton coupling constants (1JCH) depend directly on carbon hybridization. In the four‐membered ring ketones 9–12 the experimental values are larger than in cyclobutane, probably as a result of the additional strain of the extra trigonal centers in the ring. A similar trend is seen in the case of the olefinic CH in 10 and 11 (ca 175 Hz), for which the coupling constant is larger than for the corresponding carbon in cyclobutene. 1JCC values between the ring carbon atoms of the cyclobutenones are some 20% lower than in the models—a bigger difference than in cyclobutanes, again indicative of the increased ring strain. The very low 42.4 Hz coupling between C‐1 and C‐2 in 9 might well indicate a measure of bond localization. 2JCC and 3JCC values are also discussed. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
The HSQC sequence provides a sensitive way of determining the 13C chemical shift of protonated carbons. It uses INEPT elements for magnetization transfer, which can only be optimized for one value of 1JCH, but small organic molecules contain a wide range of 1JCH values. One popular method of compensating for 1JCH variation is to incorporate adiabatic pulses into the INEPT elements. This article shows that this method fails for a significant subset of functional groups. It also shows that the effects of this failure can be reduced by avoiding refocusing delays and by using a J‐compensated excitation element. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
The long-range heteronuclear single quantum multiple bond correlation (LR-HSQMBC) experiment is the experiment of choice for visualizing heteronuclear long-range coupling interactions nJCH across 4–6-bonds and is experimentally superior to the decoupled heteronuclear multiple-bond correlation (D-HMBC) experiment. Yet, the exact reasons have not been fully understood and established. On the basis of our recent investigation of the nonrefocused variants LR-HSQC and HMBC, we have extended a JHH′-dedicated investigation to the D-HMBC and LR-HSQMBC experiments. Unlike the nonrefocused variants, the influence of homonuclear couplings JHH′ on the intensity of long-range nJCH cross-peaks is not easily predictable and may be summarized as follows: (a) irrespective of the magnitude and number of JHH′ interactions long-range nJCH cross-peaks are more intense in D-HMBC spectra as long as the evolution delay Δ is not too large, because in contrast to LR-HSQMBC no JHH′-caused intensity zeroes will occur. (b) If JHH′ is small and Δ large, the intensity of cross peaks in D-HMBC spectra may be weakened or may even vanish at Δ = (0.25+0.5k)/JHH′, whereas for the LR-HSQMBC this unwanted effect occurs at Δ = k + 0.5/JHH′. Consequently, when Δ is adjusted to visualize weak nJCH long-range correlations, our findings corroborate that there are potentially more cross-peaks expected to show up in a LR-HSQMBC spectrum compared with a D-HMBC spectrum. This has been indeed noticed experimentally, even though the intensity of a many long-range nJCH cross-peaks may still be higher in the spectra of the D-HMBC experiment correspondingly adjusted for detecting weak nJCH correlations.  相似文献   

18.
The first demonstrated example of 19F–15N long‐range heteronuclear shift correlation spectroscopy at natural abundance is reported. Because of the very large variation in the size of 2J(N,F) vs 3J(N,F) long‐range heteronuclear couplings, the utilization of one of the new accordion‐optimized long‐range heteronuclear shift correlations experiments is essential if all possible correlations are to be observed in a single experiment. A modified IMPEACH‐MBC pulse sequence was used in conjunction with an optimization range from 4 to 50 Hz to demonstrate the technique using a mixture of 2‐ and 3‐fluoropyridine, which had 2J(N,F) and 3J(N,F) long‐range couplings of ?52 and 3.6 Hz, respectively. Because of the size of the 2J(N,F) long‐range coupling constant, a J‐modulation of the long‐range correlation response is observed in the spectrum resulting in a ‘doublet’ in F1 due to amplitude modulation. The size of the ‘doublet’ is shown to be a function of the parameter selection (t1max,Tmax,Tmin and spectral width in F1). This behavior is similar to F1 ‘skew’ associated with long‐range correlation responses in ACCORD‐HMBC spectra which has been analyzed in detail previously. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
In this contribution, we show that the magnitude of heteronuclear long‐range coupling constants can be directly extracted from the classical 1D HMBC spectra, as all multiplet lines of a cross‐peak always and exclusively vanish for the condition Δ = k/nJCH. To the best of our knowledge, this feature of the classical HMBC has not yet been noticed and exploited. This condition holds true, irrespective of the magnitude and numbers of additional active and passive homonuclear nJHH′ couplings. Alternatively, the nJCH value may also be evaluated by fitting the peak's intensity in the individual spectra to its simple sin(πnJCHΔ)exp(−Δ/T2eff) dependence. Compared to the previously proposed J‐HMBC sequences that also use the variation of the cross‐peak's intensity for extracting the coupling constants, the classical HMBC pulse sequence is significantly more sensitive.  相似文献   

20.
A modified pulse field gradient (PFG)‐enhanced inverse (1H)‐detected 2D heteronuclear Overhauser effect spectroscopy (HOESY) pulse sequence is demonstrated for the acquisition of 1H–7Li heteronuclear correlations. In practice, t1 noise artifacts were observed using the original PFG‐enhanced inverse‐detected HOESY pulse sequence, which degraded the ability to detect accurately weak heteronuclear Overhauser signals. Experimentally it is shown that a simple modification of the PFG‐enhanced inverse‐detected HOESY pulse sequence greatly reduces the t1 noise that may result from variations in magnetic susceptibility, and allows improved detection of weak 1H–7Li correlations. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号