首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Physica B+C》1988,147(2-3):259-266
Accurate lattice parameters a and c of the tetragonal chalcopyrite quaternary semiconductor CuGaSn□Se4 have been determined as a function of temperature by the X-ray powder diffraction method in the temperature range 300 K to about 900 K. The data have been used to evaluate the axial expansion coefficients αa and αc at various temperatures. The thermal expansion studies revealed the anisotropy between the axial expansion coefficients having a larger coefficient of expansion along the a-axis than that along the c-axis (αa > αc). The mean values αa and αc, in the temperature range 300–900 K, are found to be 14.02 × 10-6K-1 and 5.02 × 10-6K-1 respectively, and the axial ratio, c/a, changes with a coefficient of -8.96 × 10-6K-1. This result indicates an increase in the tetragonal distortion, δ = 2 - c/a with temperature. An attempt is made to explain the increase in tetragonal distortion with temperature and the anisotropic thermal expansion of CuGaSn□Se4 in terms of the thermal expansion of the A>−;Se (where A is Cu and Ga randomly distributed) and B>−;Se (where B is Sn and vacancy randomly distributed) bonds. The results are also discussed in terms of the principal Grüneisen parameters of chalcopyrite structure compounds.  相似文献   

2.
The thermal expansion of a high-quality 2H-NbSe2 single crystal is precisely measured in the basal plane and the temperature range 5.7–50 K. An anomaly of the thermal expansion in the basal plane is detected, and it is found to be caused by a superconducting transition. The change in thermal expansion coefficient α ab is used to calculate the pressure derivative of the critical temperature (dT c /dp ab ) = (19.0 ± 2.0) × 10?9 K/Pa, and this derivative agrees well with the reported data. An additional anomaly, which indicates a phase transition, is also detected in the pretransition range. The nature of the detected phase transition is discussed.  相似文献   

3.
R.W. Munn 《物理学进展》2013,62(75):515-543
The thermal expansion of axial metals is surveyed with particular reference to recent very low temperature data for zinc, cadmium, magnesium, β-tin, indium, bismuth and antimony. For a given solid, the independent thermal expansion coefficients α and α are conveniently compared at low temperatures by plotting α/T 3 and α/T 3 against T. The plots show clearly how contraction in one principal symmetry direction ensues from rapid expansion in the other direction. The Grüneisen functions γ and γ are discussed for each solid using data from lattice-dynamical models and neutron-diffraction measurements. They show how features of the individual thermal expansions arise from a combination of vibrational, elastic and electronic effects. For these solids and for zirconium, titanium, yttrium and thallium the larger of γ and γ at high temperatures is that referring to strains in the direction of the stronger forces (judged from the axial ratio). At lower temperatures the inequality reverses, except for tin, implying that the highest normal-mode frequencies depend most strongly on strain in the direction of the stronger forces. More experimental studies of thermal expansion at the lowest temperatures are desirable, as well as more second and third-order elastic constant data. Theoretical work is needed on realistic lattice models applicable to non-cubic metals.  相似文献   

4.
This paper reports an experimental study of the heat capacity and crystal lattice parameters of a polycrystalline sample of yttrium diboride prepared by high-temperature synthesis from elements. The electronic and lattice contributions to the heat capacity are isolated. The temperature dependences of the characteristic temperature, the linear thermal expansion coefficients αa(T) and α c (T), the bulk thermal expansion coefficient β(T), and the Grüneisen coefficient are calculated. A region of negative values of α c (T) and β(T) is revealed. Anharmonicity is found to exert only a minor effect on the YB2 lattice dynamics over a larger part of the temperature range covered.  相似文献   

5.
For single-crystal samples of the (Sr1?xLax)3Ru2O7 ruthenates, the temperature dependence of the thermal expansion coefficient α(T)) is measured in the range 4.2–80 K. The effect of magnetic fields H ≤ 3.5 T on thermal expansion is analyzed. It is found that the (Sr1?xLax)3Ru2O7 ruthenates exhibit an anomalous (negative) thermal expansion coefficient in the temperature range T ≤ 18 K. The position and width of the anomaly revealed in the temperature dependence of the thermal expansion coefficient α(T)) depend substantially on the magnetic field. The origin of the thermal expansion anomaly in ruthenates, the correlation of this anomaly with the stability of the crystal lattice, and the common nature of the anomalies in the thermal properties of ruthenates and high-temperature superconductors are discussed.  相似文献   

6.
Perovskite-related phases derived from SrFeO3-δ are among known mixed conductors with highest oxygen permeability and are thus of interest as the ceramic membrane materials for oxygen separation and partial oxidation of light hydrocarbons. Dense ceramics of SrFe1-xAlxO3-δ (x=0.1–0.5) were prepared via the glycine-nitrate process. The cubic solid solution formation was found to occur in the concentration range x=0–0.35. Increasing aluminum content leads to decreasing thermal expansion coefficients (TECs), relative fraction of Fe4+ under oxidizing conditions, and also the total conductivity, predominantly p-type electronic at oxygen pressures close to atmospheric. The TECs vary in the range (13.5–16.4)×10?6 K?1 at 373–923 K and increase up to (18.6–31.9)×10?6 K?1 at 923–1273 K. The oxygen permeation fluxes decrease moderately with aluminum additions. The Mössbauer spectroscopy data and p(O2) dependencies of electrical properties indicate a small-polaron mechanism of electronic transport in SrFe1-xAlxO3-δ. Reducing oxygen partial pressure results in transition from dominant p- to n-type electronic conduction. The low-p(O2) stability limit of SrFe1-xAlxO3-δ perovskites lies between that of LaFeO3-δ and Fe/Fe1-γO boundary.  相似文献   

7.
The α-Ag2S acanthite–β-Ag2S argentite phase transformation in nanocrystalline silver sulfide has been studied in situ for the first time using high-temperature X-ray diffraction and scanning electron microscopy. The formation of argentite has been proved by differential thermal analysis. The acanthite–argentite transformation occurs at a temperature of ~449–450 K, and its enthalpy is ~3.7–3.9 kJ mol–1. The thermal expansion coefficients of acanthite and argentite have been estimated.  相似文献   

8.
Linear expansion coefficients parallel and perpendicular to the layer plane of TlInS2 layer crystal were measured in the temperature range 20–250 K at T { 200 K a strong anomaly in α⊥ behaviour was observed—the value of α6 increased abruptly up to the 200 × 10?6 K?1 due to phase transition in this crystal. It was shown that there is no anomaly in the behaviour of linear expansion coefficient αz.dfnc;. This fact allowed to conclude that the phase transition in TlInS2 is caused by changes in interlayer distances.  相似文献   

9.
10.
The chemisorption of CO on W(100) at ~ 100K has been studied using a combination of flash desorption and electron stimulated desorption (ESD) techniques. This is an extension of a similar study made for CO adsorption on W(100) at temperatures in the range 200–300K. As in the 200–300 K CO layer, both α1-CO and α2-CO are formed in addition to more strongly bound CO species upon adsorption at ~ 100K; the α-CO states yield CO+ and O+ respectively upon ESD. At low CO coverages, the α1 and α2-CO states are postulated to convert to β-CO or other strongly bound CO species upon heating. At higher CO coverages, α1-CO converts to α2-CO upon thermal desorption or electron stimulated desorption. There is evidence for the presence of other weakly-bound states in the low temperature CO layer having low surface concentration at saturation. The ESD behavior of the CO layer coadsorbed with hydrogen on W(100) is reported, and it is found that H(ads) suppresses either the concentration or the ionic cross section for α1 and α2-CO states.  相似文献   

11.
The thermal expansion of the a and c axes of lT-TaS2 and of the a axis of 2H-NbSe2 have been measured between 4 K and 360 K. Discontinuities in the lattice parameters of TaS2 were observed at the known charge density wave phase transitions near 200 K and 352 K, and a new transition was found near 283 K. These results are used to estimate the entropy changes occurring at the phase transitions. At the charge density wave onset temperature in NbSe2 we find an upper limit to any discontinuity in the a axis of 2 × 10-7 and to any discontinuity in the expansion coefficient of 3 × 10-7 K-1.  相似文献   

12.
In order to investigate the relationship between negative thermal expansion and other thermal properties, the thermal conductivity of the α-phase of ZrW2O8 has been determined from 1.9 to 390 K. In addition, the heat capacity was measured from 1.9 to 300 K. The thermal conductivity of ZrW2O8 is low, glass-like and close to its theoretical minimum value. The phonon-phonon coupling of the highly anharmonic low-frequency modes which are responsible for negative thermal expansion in ZrW2O8 appears to be highly efficient, leading to short phonon mean free paths and exceptionally low thermal conductivity.  相似文献   

13.
We have explored the bulk modulus and the thermal expansion of PdFe3N (space group Pm[`3] mPm\overline 3 m) using ab initio phonon dynamics within the quasiharmonic approximation in the temperature range from 50 to 1000 K. PdFe3N possesses a linear thermal expansion coefficient common for typical ceramics. The calculated average linear thermal expansion coefficient of 6.4 × 10-6 K-1 is consistent with the average measured coefficient of 6.7 × 10-6 K-1. We have shown here that the thermal behavior of this compound can be understood based on the electronic structure and the lattice dynamics thereof. PdFe3N exhibits both metallic as well as covalent-ionic bonding. The Fe–N covalent-ionic bonding suppresses the lattice vibrations of the PdFe3 matrix. The bulk modulus of 188 GPa for PdFe3N decreases by 15% in the temperature range studied, which is expected due to presence of stiff Fe–N bonds.  相似文献   

14.
The adsorption and desorption of nitrogen on a platinum filament have been studied by thermal desorption techniques. Nitrogen adsorption becomes significant only after any carbon contamination is removed from the surface by heating the platinum filament in oxygen, and after the CO content in the background gas is reduced substantially. At room temperature nitrogen populates an atomic tightly bound β-state, E = 19 kcal mole?1. The saturation coverage of the (3-state is 4.5 × 1014 atoms cm?2. Formation of the (β-state is a zero order process in the pressure range studied. At 90 K two additional α1- and α2-desorption peaks are observed. The activation energy for desorption for the α2-state is 7.4 kcal mole?1 at low coverage decreasing to 3 kcal mole?1 at saturation of this state, 6 × 10 molecules cm?2. The maximum total coverage in the α-states was 1.2 × 1015 molecules cm?2. A replacement process between the β- and α-states has been observed where each atom in the (β-state excludes two molecules from the α-state.  相似文献   

15.

In order to check a phenomenon of the negative correlation between ionic and thermal conductivities of solid substances, we studied the thermal conductivity and expansion of cubic PbF2 single crystals at 50–300 and 5.6–317 K, respectively. We found that lead difluoride had a thermal expansion coefficient α that was equal to (28.5 ± 0.3)10−6 K−1 at 300 K, and a thermal conductivity coefficient k(T) was equal to 1.40 ± 0.07 W/(m K) at the same temperature. Thus, the thermal conductivity for PbF2 is the lowest among fluorite-type MF2 (M = Ca, Sr, Ba, Cd, Pb) thermal conductivities, whereas its fluoride-ion conductivity is the highest one among MF2 (M = Ca, Sr, Ba, Cd, Pb) ionic conductors.

  相似文献   

16.
We have measured on the CeSn3 compound, the expansion coefficient between 80 and 800 K at normal pressure, the isothermal compressibility in the 0–8 GPa pressure range at room temperature and the heat capacity at constant pressure in the 60–300 K temperature range. The experimental data were compared with those previously found for the isomorphous LaSn3 phase, assumed as a proper reference material for the study of the intermediate valency states in CeSn3. Both the thermal expansion (3α) and the isothermal compressibility (k) of CeSn3 show behaviours quite different from those of LaSn3: for instance, in the standard conditions, 3α is 55 × 10?6K?1for CeSn3 and 38 × 10?6K?1for LaSn3; k is 15 × 10?12 Pa?1 and 12 × 10?12 Pa?1 respectively for CeSn3 and LaSn3. The thermal behaviour of the molar specific heat at constant pressure of CeSn3 is similar to that of LaSn3 for temperatures lower than 50 K. In the 70–300 K temperature range, the heat capacity of CeSn3 is clearly higher than that of LaSn3, ΔCp being maximum near 150 K. The analysis of the calorimetric data show that the electronic coefficient γ of CeSn3 is temperature dependent: its value varies from 53 mJ K?2 mole?1 at low temperature 24 mJ K?2 mole?1 at 300 K.  相似文献   

17.

The thermal expansion and the heat capacity of coarse-crystalline and nanocrystalline silver sulfide Ag2S were studied by dilatometry and differential scanning calorimentry for the first time in the temperature range 290–970 K. It is found that the thermal expansion coefficient and the heat capacity of nanocrystalline silver sulfide in this temperature range are higher than those in the case of the coarse-crystalline sulfide. It is revealed that the transformation of α-Ag2S acanthite to β-Ag2S argentite and β-Ag2S argentite to γ-Ag2S phase are the first-order phase transitions; the temperatures and the enthalpies of these transformations have been determined.

  相似文献   

18.
Thermal expansion and its anomalies in the vicinity of spin-reorientation phase transitions in single crystals of RFe11Ti (R=Y, Tb, Dy, Ho, and Er) compounds are investigated by the tensometric technique in the temperature range 77–400 K. The temperature dependences of the thermal expansion coefficient α(T) are obtained. It is found that the YFe11Ti and HoFe11Ti uniaxial magnetic materials exhibit pronounced anomalies in the α coefficient at T=200 and 290 K. For the TbFe11Ti single crystal, the α coefficient is close to zero in the vicinity of the spin-reorientation phase transition (at T=325 K). For the DyFe11Ti single crystal, which is characterized by two spin-reorientation phase transitions (at T=120 and 250 K), no features in the α(T) dependence are revealed in the region of the low-temperature spin-reorientation phase transition. In the ErFe11Ti single crystal, the specific feature of thermal expansion is observed at T ~ 220 K.  相似文献   

19.
The anomalous temperature dependence of elastic constant c44 for elements V, Nb, Ta, Pd, and Pt, has been calculated using first-principles theory. It is shown that the variation of elastic constant for simple elements can be approximated as the sum of thermal expansion and electronic components. The thermal expansion contributes the normal linearly decreasing effect to the elastic constant with temperature, while electronic contribution is determined by the unique character of electronic structure of elements and leads to the anomalous effect to the elastic constant with temperature.  相似文献   

20.
The unit cell parameters a and c of nonirradiated [N(C2H5)4]2ZnBr4 crystals in the temperature region 90–300 K and of samples irradiated with γ rays to doses of 106 and 5 × 106 R in the 270-to 300-K interval were measured using x-ray diffraction. The data obtained were used to derive the thermal expansion coefficients αa and αc. It is shown that the parameter a increases and the parameter c decreases with increasing temperature. In the vicinity of the phase transition (PT) at T = 285 K, the temperature dependences of a(T) and c(T) reveal anomalies in the form of jumps and the αa(T) and αc(T) curves have a maximum and a minimum, respectively. The heat capacity of nonirradiated and irradiated [N(C2H5)4]2ZnBr4 samples was measured by adiabatic calorimetry. A maximum was found in the C p(T) curve at T = 285 K. Both x-ray diffraction and heat capacity measurements showed that the PT temperature decreased after γ irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号