首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
Let G be a planar triangle‐free graph and let C be a cycle in G of length at most 8. We characterize all situations where a 3‐coloring of C does not extend to a proper 3‐coloring of the whole graph.  相似文献   

2.
Let G be a planar graph without 4‐cycles and 5‐cycles and with maximum degree . We prove that . For arbitrarily large maximum degree Δ, there exist planar graphs of girth 6 with . Thus, our bound is within 1 of being optimal. Further, our bound comes from coloring greedily in a good order, so the bound immediately extends to online list‐coloring. In addition, we prove bounds for ‐labeling. Specifically, and, more generally, , for positive integers p and q with . Again, these bounds come from a greedy coloring, so they immediately extend to the list‐coloring and online list‐coloring variants of this problem.  相似文献   

3.
Let G=(V, E) be a graph where every vertex vV is assigned a list of available colors L(v). We say that G is list colorable for a given list assignment if we can color every vertex using its list such that adjacent vertices get different colors. If L(v)={1, …, k} for all vV then a corresponding list coloring is nothing other than an ordinary k‐coloring of G. Assume that W?V is a subset of V such that G[W] is bipartite and each component of G[W] is precolored with two colors taken from a set of four. The minimum distance between the components of G[W] is denoted by d(W). We will show that if G is K4‐minor‐free and d(W)≥7, then such a precoloring of W can be extended to a 4‐coloring of all of V. This result clarifies a question posed in 10. Moreover, we will show that such a precoloring is extendable to a list coloring of G for outerplanar graphs, provided that |L(v)|=4 for all vV\W and d(W)≥7. In both cases the bound for d(W) is best possible. © 2009 Wiley Periodicals, Inc. J Graph Theory 60: 284‐294, 2009  相似文献   

4.
For graphs G and H , an H‐coloring of G is a map from the vertices of G to the vertices of H that preserves edge adjacency. We consider the following extremal enumerative question: for a given H , which connected n‐vertex graph with minimum degree δ maximizes the number of H‐colorings? We show that for nonregular H and sufficiently large n , the complete bipartite graph is the unique maximizer. As a corollary, for nonregular H and sufficiently large n the graph is the unique k‐connected graph that maximizes the number of H‐colorings among all k‐connected graphs. Finally, we show that this conclusion does not hold for all regular H by exhibiting a connected n‐vertex graph with minimum degree δ that has more ‐colorings (for sufficiently large q and n ) than .  相似文献   

5.
图的正常k-全染色是用k种颜色给图的顶点和边同时进行染色,使得相邻或者相关联的元素(顶点或边)染不同的染色.使得图G存在正常k-全染色的最小正整数k,称为图G的全色数,用χ″(G)表示.证明了若图G是最大度△≥6且不含5-圈和相邻6-圈的平面图,则χ″(G)=△+1.  相似文献   

6.
Every planar graph is known to be acyclically 7‐choosable and is conjectured to be acyclically 5‐choosable (O. V. Borodin, D. G. Fon‐Der‐Flaass, A. V. Kostochka, E. Sopena, J Graph Theory 40 (2002), 83–90). This conjecture if proved would imply both Borodin's (Discrete Math 25 (1979), 211–236) acyclic 5‐color theorem and Thomassen's (J Combin Theory Ser B 62 (1994), 180–181) 5‐choosability theorem. However, as yet it has been verified only for several restricted classes of graphs. Some sufficient conditions are also obtained for a planar graph to be acyclically 4‐ and 3‐choosable. In particular, the acyclic 4‐choosability was proved for the following planar graphs: without 3‐, 4‐, and 5‐cycles (M. Montassier, P. Ochem, and A. Raspaud, J Graph Theory 51 (2006), 281–300), without 4‐, 5‐, and 6‐cycles, or without 4‐, 5‐, and 7‐cycles, or without 4‐, 5‐, and intersecting 3‐cycles (M. Montassier, A. Raspaud, W. Wang, Topics Discrete Math (2006), 473–491), and neither 4‐ and 5‐cycles nor 8‐cycles having a triangular chord (M. Chen and A. Raspaud, Discrete Math. 310(15–16) (2010), 2113–2118). The purpose of this paper is to strengthen these results by proving that each planar graph without 4‐ and 5‐cycles is acyclically 4‐choosable.  相似文献   

7.
8.
For graphs G and H, a homomorphism from G to H, or H‐coloring of G, is a map from the vertices of G to the vertices of H that preserves adjacency. When H is composed of an edge with one looped endvertex, an H‐coloring of G corresponds to an independent set in G. Galvin showed that, for sufficiently large n, the complete bipartite graph is the n‐vertex graph with minimum degree δ that has the largest number of independent sets. In this article, we begin the project of generalizing this result to arbitrary H. Writing for the number of H‐colorings of G, we show that for fixed H and or , for any n‐vertex G with minimum degree δ (for sufficiently large n). We also provide examples of H for which the maximum is achieved by and other H for which the maximum is achieved by . For (and sufficiently large n), we provide an infinite family of H for which for any n‐vertex G with minimum degree δ. The results generalize to weighted H‐colorings.  相似文献   

9.
The odd‐girth of a graph is the length of a shortest odd circuit. A conjecture by Pavol Hell about circular coloring is solved in this article by showing that there is a function ƒ(ϵ) for each ϵ : 0 < ϵ < 1 such that, if the odd‐girth of a planar graph G is at least ƒ(ϵ), then G is (2 + ϵ)‐colorable. Note that the function ƒ(ϵ) is independent of the graph G and ϵ → 0 if and only if ƒ(ϵ) → ∞. A key lemma, called the folding lemma, is proved that provides a reduction method, which maintains the odd‐girth of planar graphs. This lemma is expected to have applications in related problems. © 2000 John Wiley & Sons, Inc. J Graph Theory 33: 109–119, 2000  相似文献   

10.
The second author's (B.A.R.) ω, Δ, χ conjecture proposes that every graph satisfies . In this article, we prove that the conjecture holds for all claw‐free graphs. Our approach uses the structure theorem of Chudnovsky and Seymour. Along the way, we discuss a stronger local conjecture, and prove that it holds for claw‐free graphs with a three‐colorable complement. To prove our results, we introduce a very useful χ‐preserving reduction on homogeneous pairs of cliques, and thus restrict our view to so‐called skeletal graphs.  相似文献   

11.
A star coloring of an undirected graph G is a proper vertex coloring of G (i.e., no two adjacent vertices are assigned the same color) such that no path on four vertices is 2‐colored. The star chromatic number of G is the smallest integer k for which G admits a star coloring with k colors. In this paper, we prove that every subcubic graph is 6‐star‐colorable. Moreover, the upper bound 6 is best possible, based on the example constructed by Fertin, Raspaud, and Reed (J Graph Theory 47(3) (2004), 140–153).  相似文献   

12.
We study the perfect 2‐colorings (also known as the equitable partitions into two parts or the completely regular codes with covering radius 1) of the Johnson graphs . In particular, we classify all the realizable quotient matrices of perfect 2‐colorings for odd v. © 2012 Wiley Periodicals, Inc. J. Combin. Designs 21: 232–252, 2013  相似文献   

13.
It is shown that every simple graph with maximal degree 4 is 5-edge-choosable. © 1999 John Wiley & Sons, Inc. J Graph Theory 32: 250–264, 1999  相似文献   

14.
A graph G is 1‐Hamilton‐connected if is Hamilton‐connected for every vertex . In the article, we introduce a closure concept for 1‐Hamilton‐connectedness in claw‐free graphs. If is a (new) closure of a claw‐free graph G, then is 1‐Hamilton‐connected if and only if G is 1‐Hamilton‐connected, is the line graph of a multigraph, and for some , is the line graph of a multigraph with at most two triangles or at most one double edge. As applications, we prove that Thomassen's Conjecture (every 4‐connected line graph is hamiltonian) is equivalent to the statement that every 4‐connected claw‐free graph is 1‐Hamilton‐connected, and we present results showing that every 5‐connected claw‐free graph with minimum degree at least 6 is 1‐Hamilton‐connected and that every 4‐connected claw‐free and hourglass‐free graph is 1‐Hamilton‐connected.  相似文献   

15.
A proper edge coloring of a graph is said to be acyclic if any cycle is colored with at least three colors. An edge-list L of a graph G is a mapping that assigns a finite set of positive integers to each edge of G. An acyclic edge coloring ? of G such that for any is called an acyclic L-edge coloring of G. A graph G is said to be acyclically k-edge choosable if it has an acyclic L‐edge coloring for any edge‐list L that satisfies for each edge e. The acyclic list chromatic index is the least integer k such that G is acyclically k‐edge choosable. We develop techniques to obtain bounds for the acyclic list chromatic indices of outerplanar graphs, subcubic graphs, and subdivisions of Halin graphs.  相似文献   

16.
17.
For graphs G and H, a homomorphism from G to H, or Hcoloring of G, is an adjacency preserving map from the vertex set of G to the vertex set of H. Our concern in this article is the maximum number of H‐colorings admitted by an n‐vertex, d‐regular graph, for each H. Specifically, writing for the number of H‐colorings admitted by G, we conjecture that for any simple finite graph H (perhaps with loops) and any simple finite n‐vertex, d‐regular, loopless graph G, we have where is the complete bipartite graph with d vertices in each partition class, and is the complete graph on vertices.Results of Zhao confirm this conjecture for some choices of H for which the maximum is achieved by . Here, we exhibit for the first time infinitely many nontrivial triples for which the conjecture is true and for which the maximum is achieved by .We also give sharp estimates for and in terms of some structural parameters of H. This allows us to characterize those H for which is eventually (for all sufficiently large d) larger than and those for which it is eventually smaller, and to show that this dichotomy covers all nontrivial H. Our estimates also allow us to obtain asymptotic evidence for the conjecture in the following form. For fixed H, for all d‐regular G, we have where as . More precise results are obtained in some special cases.  相似文献   

18.
For a fixed (multi)graph H, a graph G is H‐linked if any injection f: V(H)→V(G) can be extended to an H‐subdivision in G. The notion of an H ‐linked graph encompasses several familiar graph classes, including k‐linked, k‐ordered and k‐connected graphs. In this article, we give two sharp Ore‐type degree sum conditions that assure a graph G is H ‐linked for arbitrary H. These results extend and refine several previous results on H ‐linked, k‐linked, and k‐ordered graphs. © 2011 Wiley Periodicals, Inc. J Graph Theory 71:69–77, 2012  相似文献   

19.
The conjecture on acyclic 5‐choosability of planar graphs [Borodin et al., 2002] as yet has been verified only for several restricted classes of graphs. None of these classes allows 4‐cycles. We prove that a planar graph is acyclically 5‐choosable if it does not contain an i‐cycle adjacent to a j‐cycle where 3?j?5 if i = 3 and 4?j?6 if i = 4. This result absorbs most of the previous work in this direction. © 2010 Wiley Periodicals, Inc. J Graph Theory 68:169‐176, 2011  相似文献   

20.
A triangle in a hypergraph is a collection of distinct vertices u, v, w and distinct edges e, f, g with , and . Johansson [Tech. report (1996)] proved that every triangle‐free graph with maximum degree Δ has list chromatic number . Frieze and Mubayi (Electron J Comb 15 (2008), 27) proved that every linear (meaning that every two edges share at most one vertex) triangle‐free triple system with maximum degree Δ has chromatic number . The restriction to linear triple systems was crucial to their proof. We provide a common generalization of both these results for rank 3 hypergraphs (edges have size 2 or 3). Our result removes the linear restriction from 8 , while reducing to the (best possible) result [Johansson, Tech. report (1996)] for graphs. In addition, our result provides a positive answer to a restricted version of a question of Ajtai Erd?s, Komlós, and Szemerédi (combinatorica 1 (1981), 313–317) concerning sparse 3‐uniform hypergraphs. As an application, we prove that if is the collection of 3‐uniform triangles, then the Ramsey number satisfies for some positive constants a and b. The upper bound makes progress towards the recent conjecture of Kostochka, Mubayi, and Verstraëte (J Comb Theory Ser A 120 (2013), 1491–1507) that where C3 is the linear triangle. © 2014 Wiley Periodicals, Inc. Random Struct. Alg., 47, 487–519, 2015  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号