首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A complete library of poly(2‐oxazoline) block copolymers was synthesized via cationic ring opening polymerization for the characterization by two different soft ionization techniques, namely matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS) and electrospray ionization quadrupole time‐of‐flight mass spectrometry (ESI‐Q‐TOF MS). In addition, a detailed characterization was performed by tandem MS to gain more structural information about the block copolymer composition and its fragmentation behavior. The fragmentation of the poly(2‐oxazoline) block copolymers revealed the desired polymer structure and possible side reactions, which could be explained by different mechanisms, like 1,4‐ethylene or hydrogen elimination and the McLafferty +1 rearrangement. Polymers with aryl side groups showed less fragmentation due to their higher stability compared to polymers with alkyl side groups. These insights represent a further step toward the construction of a library with fragments and their fragmentation pathways for synthetic polymers, following the successful examples in proteomics. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

2.
Matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS) coupled with CID (collision‐induced dissociation) has been used for the detailed characterization of two poly(2‐ethyl‐2‐oxazoline)s as part of a continuing study of synthetic polymers by MALDI‐TOF MS/MS. These experiments provided information about the variety of fragmentation pathways for poly(oxazoline)s. It was possible to show that, in addition to the eliminations of small molecules, like ethene and hydrogen, the McLafferty rearrangement is also a possible fragmentation route. A library of fragmentation pathways for synthetic polymers was also constructed and such a library should enable the fast and automated data analysis of polymers in the future. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Commercial copper wire and its polymer insulation cladding was investigated for the presence of three synthetic antioxidants (ADK STAB AO412S, Irganox 1010 and Irganox MD 1024) by three different mass spectrometric techniques including electrospray ionization–ion trap–mass spectrometry (ESI–IT–MS), matrix‐assisted laser desorption/ionization reflectron time‐of‐flight (TOF) mass spectrometry (MALDI–RTOF–MS) and reflectron TOF secondary ion mass spectrometry (RTOF–SIMS). The samples were analyzed either directly without any treatment (RTOF–SIMS) or after a simple liquid/liquid extraction step (ESI–IT–MS, MALDI–RTOF–MS and RTOF–SIMS). Direct analysis of the copper wire itself or of the insulation cladding by RTOF–SIMS allowed the detection of at least two of the three antioxidants but at rather low sensitivity as molecular radical cations and with fairly strong fragmentation (due to the highly energetic ion beam of the primary ion gun). ESI–IT‐ and MALDI–RTOF–MS‐generated abundant protonated and/or cationized molecules (ammoniated or sodiated) from the liquid/liquid extract. Only ESI–IT–MS allowed simultaneous detection of all three analytes in the extract of insulation claddings. The latter two so‐called ‘soft’ desorption/ionization techniques exhibited intense fragmentation only by applying low‐energy collision‐induced dissociation (CID) tandem MS on a multistage ion trap‐instrument and high‐energy CID on a tandem TOF‐instrument (TOF/RTOF), respectively. Strong differences in the fragmentation behavior of the three analytes could be observed between the different CID spectra obtained from either the IT‐instrument (collision energy in the very low eV range) or the TOF/RTOF‐instrument (collision energy 20 keV), but both delivered important structural information. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
5.
Matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI TOF MS) was used to analyze a series of synthetic organic ions bearing fixed multiple charges. Despite the multiple intrinsic charges, only singly charged ions were recorded in each case. In addition to the pseudo‐molecular ions formed by counterion adduction, deprotonation and electron capture, a number of fragment ions were also observed. Charge splitting by fragmentation was found to be a viable route for charge reduction leading to the formation of the observed singly charged fragment ions. Unlike multivalent metal ions, organic ions can rearrange and/or fragment during charge reduction. This fragmentation process will evidently complicate the interpretation of the MALDI MS spectrum. Because MALDI MS is usually considered as a soft ionization technique, the fragment ion peaks can easily be erroneously interpreted as impurities. Therefore, the awareness and understanding of the underlying MALDI‐induced fragmentation pathways is essential for a proper interpretation of the corresponding mass spectra. Due to the fragment ions generated during charge reduction, special care should be taken in the MALDI MS analysis of multiply charged ions. In this work, the possible mechanisms by which the organic ions bearing fixed multiple charges fragment are investigated. With an improved understanding of the fragmentation mechanisms, MALDI TOF MS should still be a useful technique for the characterization of organic ions with fixed multiple charges.  相似文献   

6.
In order to investigate gas‐phase fragmentation reactions of phosphorylated peptide ions, matrix‐assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) tandem mass (MS/MS) spectra were recorded from synthetic phosphopeptides and from phosphopeptides isolated from natural sources. MALDI‐TOF/TOF (TOF: time‐of‐flight) spectra of synthetic arginine‐containing phosphopeptides revealed a significant increase of y ions resulting from bond cleavages on the C‐terminal side of phosphothreonine or phosphoserine. The same effect was found in ESI‐MS/MS spectra recorded from the singly charged but not from the doubly charged ions of these phosphopeptides. ESI‐MS/MS spectra of doubly charged phosphopeptides containing two arginine residues support the following general fragmentation rule: Increased amide bond cleavage on the C‐terminal side of phosphorylated serines or threonines mainly occurs in peptide ions which do not contain mobile protons. In MALDI‐TOF/TOF spectra of phosphopeptides displaying N‐terminal fragment ions, abundant b–H3PO4 ions resulting from the enhanced dissociation of the pSer/pThr–X bond were detected (X denotes amino acids). Cleavages at phosphoamino acids were found to be particularly predominant in spectra of phosphopeptides containing pSer/pThr–Pro bonds. A quantitative evaluation of a larger set of MALDI‐TOF/TOF spectra recorded from phosphopeptides indicated that phosphoserine residues in arginine‐containing peptides increase the signal intensities of the respective y ions by almost a factor of 3. A less pronounced cleavage‐enhancing effect was observed in some lysine‐containing phosphopeptides without arginine. The proposed peptide fragmentation pathways involve a nucleophilic attack by phosphate oxygen on the carbon center of the peptide backbone amide, which eventually leads to cleavage of the amide bond. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
The spontaneous reaction of unsaturated double bonds induced by the fragmentation of ether bonds is presented as a method to obtain a crosslinked polymer material. Poly(1,5‐dioxepan‐2‐one) (PDXO) was synthesized using three different polymerization techniques to investigate the influence of the synthesis conditions on the ether bond fragmentation. It was found that thermal fragmentation of the ether bonds in the polymer main chain occurred when the synthesis temperature was 140 °C or higher. The double bonds produced reacted spontaneously to form crosslinks between the polymer chains. The formation of a network structure was confirmed by Fourier transform infrared spectrometry and differential scanning calorimetry. In addition, the low molar mass species released during hydrolysis of the DXO polymers were monitored by ESI‐MS and MALDI‐TOF‐MS. Ether bond fragmentation also occurred during the ionization in the electrospray instrument, but predominantly in the lower mass region. No fragmentation took place during MALDI ionization, but it was possible to detect water‐soluble DXO oligomers with a molar mass up to approximately 5000 g/mol. The results show that ether bond fragmentation can be used to form a network structure of PDXO. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7258–7267, 2008  相似文献   

8.
High‐resolution matrix‐assisted laser desorption/ionization (MALDI) time‐of‐flight mass spectrometry (TOF MS) was used for the analysis of the low‐molecular‐weight products from the photo‐oxidation of poly(3‐hexylthiophene) (P3HT) in solution and thin film. Eight new peak series were observed in the low‐mass range of the mass spectra of the products degraded in solution, and the formulas of the eight components were determined from the accurate mass. From SEC/MALDI‐TOF MS, two components were identified as the degraded products, and the other six components were derived from the fragmentation of the degraded products during the MALDI process. A mechanism for the formation of these components was proposed on the basis of the results of MALDI‐TOF MS. For the thin film degradation, a part of products in the solution degradation were observed, which supports that the oxidation of P3HT in solution and thin film proceeded in the same mechanism. This study shows that high‐resolution MALDI‐TOF MS is effective for the analysis of the low‐molecular‐weight products from P3HT photo‐oxidation and expected to be feasible for the degradation analyses of other polymers. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
10.
Branched polyethylenimines (PEIs) with lower average molecular weights (600, 1200 and 1800 Da) have been studied by Electrospray Ionization (ESI) and Matrix‐Assisted Laser Desorption/Ionization (MALDI) mass spectrometry. In both, ESI and MALDI mass spectra, the main distribution arises from protonated PEI oligomers with NH2 end groups, [PEI + H]+, which are observed at m/z 43n + 18. A trace of sodium contamination in the PEI samples results in the presence of a series that appears at m/z 43n + 40 [PEI + Na]+. However, only the MALDI mass spectra show a [PEI + K]+ series at m/z 43n + 56, because of matrix contamination with potassium, and a series generated by condensation of the matrix with PEI at m/z 43n + 30. Collisionally activated dissociation tandem mass spectrometry (CAD (MS/MS)) of protonated PEI oligomers is shown to yield three fragment ion series bn, and Kn. The experiments have demonstrated the capabilities of these mass spectrometry techniques, along with CAD MS/MS to detect and characterize such polar synthetic polymers. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Sequences and end groups of complex copolyesters were determined by fragmentation analysis by means of matrix‐assisted laser desorption/ionization collision‐induced dissociation tandem mass spectrometry (MALDI CID MS/MS). The complexity of the crude copolyester mixture was reduced by a chromatographic separation followed by a MALDI time‐of‐flight (TOF) investigation of fractions. Due to overlapping compositional and end‐group information a clear assignment of end groups was very difficult. However, the fragmentation of suitable precursor ions resulted in typical fragment ion patterns and, therefore, enabled a fast and unambiguous determination of the end groups and composition of this important class of polymers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Linear–hyperbranched hybrid poly(butylene adipate) (HPBA) copolymers were synthesized through a branching reaction between the linear tailored prepolymer terminated with methyl ester groups and different mol percents of the 1,1,1‐tris(hydroxymethyl) propane (TMP) as branching agent, using the titanium(IV) isopropoxide as catalyst, at 180 °C under vacuum for different times. All samples were characterized by NMR and matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI‐TOF MS). In particular, MALDI‐TOF mass spectra of the unfractionated and size exclusion chromatography (SEC)‐fractionated hyperbranched (HB) samples gave information on their composition, on the end groups as well as on the TMP units present in each family of HB macromolecules. HB chains containing cyclic branches and ether bonds formed by intermolecular transesterification and intramolecular and intermolecular transetherification side reactions, respectively, were also revealed by MALDI‐TOF MS analysis. All samples were also investigated by SEC. The average molar masses (MMs) evaluated by SEC calibrated with the polystyrene (PS) narrow standards were overestimated with respect to those calculated by the SEC/MALDI‐TOF MS self‐ calibration method, which gave reliable values. Moreover, it also showed that the hydrodynamic volume of the HPBA polymers was higher than that of the linear PSs with similar MMs. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

13.
It is demonstrated that bifunctionalized polythiophenes involving thiol and azide end‐functional groups can be synthesized by chain‐growth Suzuki‐Miyaura type polymerization. The bifunctionalized polythiophenes are successfully characterized by 1H NMR, gel permeation chromatography (GPC), and matrix‐assisted laser desorption ionization time‐of‐flight (MALDI‐TOF). Furthermore, the azide end‐group reacts with DNA via “click chemistry” to form a polythiophene/DNA hybrid structure, which is characterized by ESI‐MS. The described synthetic approaches will lead to the synthesis of novel multi‐block copolymers as well as biomolecule‐based conjugated polymer structures.  相似文献   

14.
Comparative MS/MS studies of singly and doubly charged electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) precursor peptide ions are described. The spectra from these experiments have been evaluated with particular emphasis on the data quality for subsequent data processing and protein/amino acid sequence identification. It is shown that, once peptide ions are formed by ESI or MALDI, their charge state, as well as the collision energy, is the main parameter determining the quality of collision-induced dissociation (CID) MS/MS fragmentation spectra of a given peptide. CID-MS/MS spectra of singly charged peptides obtained on a hybrid quadrupole orthogonal time-of-flight mass spectrometer resemble very closely spectra obtained by matrix-assisted laser desorption/ionization post-source decay time-of-flight mass spectrometry (MALDI-PSD-TOFMS). On the other hand, comparison of CID-MS/MS spectra of either singly or doubly charged ion species shows no dependence on whether ions have been formed by ESI or MALDI. This observation confirms that, at the time of precursor ion selection, further mass analysis is effectively decoupled from the desorption/ionization event. Since MALDI ions are predominantly formed as singly charged species and ESI ions as doubly charged, the associated difference in the spectral quality of MS/MS spectra as described here imposes direct consequences on data processing, database searching using ion fragmentation data, and de novo sequencing when ionization techniques are changed.  相似文献   

15.
The use of isobaric tagging for relative and absolute quantification (iTRAQ) has increased dramatically over the past few years. Many factors can affect the accuracy of quantification. Some of these include the number of biological/technical replicates, sample complexity, instrumentation, method of peptide/protein identification and the statistical techniques used for data analysis. It has been observed that the low collision energies normally used in electrospray ionization quadrupole time-of-flight (ESI QTOF) can result in low iTRAQ reporter ion abundances. We used two-way analysis of variance (ANOVA) to compare the iTRAQ ratios that were generated on an ESI QTOF and a matrix-assisted laser desorption/ionization tandem time-of-flight (MALDI TOF/TOF). It appears that iTRAQ analyses performed on an ESI QTOF without any special modifications to instrumental parameters produce essentially the same protein ratios as those obtained on a MALDI TOF/TOF.  相似文献   

16.
Matrix‐assisted laser desorption ionization time of flight mass spectrometry (MALDI‐TOF‐MS) was utilized for the analysis of polymers obtained by the living cationic polymerization of isobutyl vinyl ether (IBVE) with the HCl‐VE adduct/SnCl4/n‐Bu4NCl initiating system in CH2Cl2 at −78 °C. Under optimized analysis conditions, well‐resolved spectra were obtained for samples with number‐average molecular weights of ≤104 with the use of 1,8‐dihydroxy‐9(10H)‐anthracenone (dithranol) as a matrix and sodium trifluoroacetate as an added salt. The MS spectra showed only one series of peaks separated exactly by the mass of the IBVE. The observed mass of each peak was in good agreement with the theoretical one, which possesses one initiator fragment at the α end and one methoxy group originated from quenching with methanol at the ω end. Thus, detailed end group analysis is possible for poly(VE). © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4023–4031, 2000  相似文献   

17.
A computational technique is presented for the automated assignment of the multiple charge and multimer states (ionization states) in the time‐of‐flight (TOF) domain for matrix‐assisted laser desorption/ionization (MALDI) spectra. Examples of the application of this technique include an improved, automatic calibration over the 2 to 70 kDa mass range and a reduced data redundancy after reconstruction of the molecular spectrum of only singly charged monomers. This method builds on our previously reported enhancement of broad‐mass signal detection, and includes two steps: (1) an automated correction of the instrumental acquisition initial time delay, and (2) a recursive TOF detection of multiple charge states and singly charged multimers of molecular [MH]+ ions over the entire record range, based on MALDI methods. The technique is tested using calibration mixtures and pooled serum quality control samples acquired along with clinical study data. The described automated procedure improves the analysis and dimension reduction of MS data for comparative proteomics applications. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS) was chosen for an in‐detail analysis of poly(methyl methacrylate) (PMMA) in order to determine the possible fragmentation mechanism with the help of collision‐induced dissociation (CID). All experiments were performed on a well‐defined PMMA standard and were optimized for sample preparation and measurement conditions of both MS and MS/MS. In order to investigate the fragmentation pathways, two parent peaks—both charged with sodium (m/z = 1 625.9 and 2 226.2 Da, respectively)—were selected, thus permitting the examination of possible cleavages, and reaction pathways. For both chosen peaks, the MALDI‐TOF MS/MS spectra revealed four fragmentation series that could be explained by single or multiple main chain scissions and secondary reactions of the PMMA side groups. According to the molar mass of the fragments, a loss or migration of the side group to the end of the free radical, followed by a β‐scission, was favored. These insights are the first steps toward the construction of a library with fragments and fragmentation pathways, complementary to proteomics libraries, in order to obtain fast and automated identification of substances.

  相似文献   


19.
The principle relating to the selection of a proper matrix, cationization reagent, and solvent for matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS) of synthetic polymers is still a topic of research. In this work we focused on the selection of a suitable MALDI solvent. Polystyrene PS7600 and poly(ethylene glycol) PEG4820 were analyzed by MALDI‐TOF MS using various solvents which were selected based on the Hansen solubility parameter system. For polystyrene (PS), dithranol was used as the matrix and silver trifluoroacetate as the cationization reagent whereas, for poly(ethylene glycol) (PEG), the combination of 2,5‐dihydroxybenzoic acid and sodium trifluoroacetate was used for all experiments. When employing solvents which dissolve PS and PEG, reliable MALDI mass spectra were obtained while samples in non‐solvents (solvents which are not able to dissolve the polymer) failed to provide spectra. It seems that the solubility of the matrix and the cationization reagent are less important than the polymer solubility. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Macrocyclic (arylene thioether ketone) oligomers together with a linear poly(phenylene sulfide ketone) oligomer were synthesized by a one‐step reaction. The macrocycles and linear oligomer were fully characterized by 13C‐NMR, H‐NMR, matrix assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF‐MS), differential scanning calorimetry (DSC) and FT‐IR. Uncatalyzed, simultaneously ring‐opening polymerization (ROP) of the macrocycles and the mixture of macrocycles and linear oligomer were carried out under dynamic heating conditions. The ROP temperature of the macrocycles decreased upon mixing it with the linear oligomer. The ROP conditions and mechanism were investigated and discussed. The macrocycles and their mixture show potential applications in high temperature adhesives and sealants. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号