首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Physics letters. A》2002,298(4):236-237
The ground state of a class of Ising models with site dependent arbitrary spin quantum number is shown to be restricted to ±SiMAX state where SiMAX is the spin quantum number at the site i.  相似文献   

2.
Considering the model of a scalar massive Fermion, it is shown that by means of deformation techniques it is possible to obtain all integrable quantum field theoretic models on two-dimensional Minkowski space which have factorizing S-matrices corresponding to two-particle scattering functions S 2 satisfying S 2(0) = ?1. Among these models there is for example the Sinh-Gordon model. Our analysis provides a complement to recent developments regarding deformations of quantum field theories. The deformed model is investigated also in higher dimensions. In particular, locality and covariance properties are analyzed.  相似文献   

3.
It is indicated that the ground state of Fermi systems with (non)-Abelian gauge interactions has a well defined quantum theory devoid of infrared divergences and mass singularities. This is exploited to develop a systematic quantum theory of the quark gas. The equation of state of the quark gas is evaluated up to second order in the Gell-Mann-Low charge αS(μ). The analysis based on neutron matter models suggests that the matter in the neutron stars can be in the quark phase provided the color interaction is “moderately” strong i.e. αS (3 GeV) ? 0.3.  相似文献   

4.
Interactivity generates paradox in that the interactive control by one systemC of predicates about another system-under-studyS may falsify these predicates. We formulate an “interactive logic” to resolve this paradox of interactivity. Our construction generalizes one, the Galois connection, used by Von Neumann for the similar quantum paradox. We apply the construction to atransition system, a concept that includes general systems, automata, and quantum systems. In some (classical) automataS, the interactive predicates aboutS show quantumlike complementarity arising from interactivity: The interactive paradox generates the quantum paradox. Some classicalS's have noncommutative algebras of interactively observable coordinates similar to the Heisenberg algebra of a quantum system. SuchS's are “hidden variable” models of quantum theory not covered by the hidden variable studies of Von Neumann, Bohm, Bell, or Kochen and Specker. It is conceivable that some quantum effects in Nature arise from interactivity.  相似文献   

5.
We propose a new type of quantum walk in thin ferromagnetic films. A giant Skyrmion collapses to a singular point in a thin ferromagnetic film, emitting spin waves, when external magnetic field is increased beyond the critical one. After the collapse the remnant is a quantum walker carrying spin S. We determine its time evolution and show the diffusion process is a continuous-time quantum walk. We also analyze an interference of two quantum walkers after two Skyrmion bursts. The system presents a new type of quantum walk for S>1/2, where a quantum walker breaks into 2S quantum walkers.  相似文献   

6.
In their recent work on the dimensional reduction, Candelas and Weinberg considered a model which is compactified into a direct product space of the Minkowski space (M4) and an N-dimensional sphere (SN). In the present paper we investigate generalized models of their type which are compactified into M4 × SM × SN and M4 × SM × CP2. The compactification is caused by the quantum loop effect due to a large number of matter fields. The conditions for the vacuum stability are studied. Numerical computation of the loop effect is undertaken, and it is shown that some of the models of the type M4 × SM × SN admit a stable solution which has finite circumferences of both of the extra spaces and positive coupling constants of the Einstein-Yang-Mills theory in four dimensions.  相似文献   

7.
For a given quantum state ρ and two quantum operations Φ and Ψ, the information encoded in the quantum state ρ is quantified by its von Neumann entropy S(ρ). By the famous Choi-Jamio?kowski isomorphism, the quantum operation Φ can be transformed into a bipartite state, the von Neumann entropy Smap(Φ) of the bipartite state describes the decoherence induced by Φ. In this Letter, we characterize not only the pairs (Φ,ρ) which satisfy S(Φ(ρ))=S(ρ), but also the pairs (Φ,Ψ) which satisfy Smap(Φ°Ψ)=Smap(Ψ).  相似文献   

8.
A method is introduced for constructing lattice discretizations of large classes of integrable quantum field theories. The method proceeds in two steps: The quantum algebraic structure underlying the integrability of the model is determined from the algebra of the interaction terms in the light-cone representation. The representation theory of the relevant quantum algebra is then used to construct the basic ingredients of the quantum inverse scattering method, the lattice Lax matrices and R-matrices. This method is illustrated with four examples: The sinh-Gordon model, the affine sl(3) Toda model, a model called the fermionic sl(2|1) Toda theory, and the N=2 supersymmetric sine-Gordon model. These models are all related to sigma models in various ways. The N=2 supersymmetric sine-Gordon model, in particular, describes the Pohlmeyer reduction of string theory on AdS2×S2, and is dual to a supersymmetric non-linear sigma model with a sausage-shaped target space.  相似文献   

9.
The free induction decay (FID) of the transverse magnetization in a dipolar-coupled rigid lattice is a fundamental problem in magnetic resonance and in the theory of many-body systems. As it was shown earlier the FID shapes for the systems of classical magnetic moments and for quantum nuclear spin ones coincide if there are many nearly equivalent nearest neighbors n in a solid lattice. In this paper, we reduce a multispin density matrix of above system to a two-spin matrix. Then we obtain analytic expressions for the mutual information and the quantum and classical parts of correlations at the arbitrary spin quantum number S, in the high-temperature approximation. The time dependence of these functions is expressed via the derivative of the FID shape. To extract classical correlations for S > 1/2 we provide generalized POVM measurement (positive-operator-valued measure) using the basis of spin coherent states. We show that in every pair of spins the portion of quantum correlations changes from 1/2 to 1/(S + 1) when S is growing up, and quantum properties disappear completely only if S → ∞.  相似文献   

10.
The thermodynamics of the unitary (normalized spin) quantum and classical Ising models with skew magnetic field, for |J|β?0.9, is derived for the ferromagnetic and antiferromagnetic cases. The high-temperature expansion (β-expansion) of the Helmholtz free energy is calculated up to order β7 for the quantum version (spin S≥1/2) and up to order β19 for the classical version. In contrast to the S=1/2 case, the thermodynamics of the transverse Ising and that of the XY model for S>1/2 are not equivalent. Moreover, the critical line of the T=0 classical antiferromagnetic Ising model with skew magnetic field is absent from this classical model, at least in the temperature range of |J|β?0.9.  相似文献   

11.
We consider a large class of two-dimensional integrable quantum field theories with non-abelian internal symmetry and classical scale invariance. We present a general procedure to determine explicitly the conserved quantum monodromy operator generating infinitely many non-local charges. The main features of our method are a factorization principle and the use of P, T, and internal symmetries. The monodromy operator is shown to satisfy a Yang-Baxter algebra, the structure constants (i.e. the quantum R-matrix) of which are determined by two-particle S-matrix of the theory. We apply the method to the chiral SU(N) and the O(2N) Gross-Neveu models.  相似文献   

12.
If a one-dimensional quantum lattice system is subject to one step of a reversible discrete-time dynamics, it is intuitive that as much “quantum information” as moves into any given block of cells from the left, has to exit that block to the right. For two types of such systems — namely quantum walks and cellular automata — we make this intuition precise by defining an index, a quantity that measures the “net flow of quantum information” through the system. The index supplies a complete characterization of two properties of the discrete dynamics. First, two systems S 1, S 2 can be “pieced together”, in the sense that there is a system S which acts like S 1 in one region and like S 2 in some other region, if and only if S 1 and S 2 have the same index. Second, the index labels connected components of such systems: equality of the index is necessary and sufficient for the existence of a continuous deformation of S 1 into S 2. In the case of quantum walks, the index is integer-valued, whereas for cellular automata, it takes values in the group of positive rationals. In both cases, the map \({S \mapsto {\rm ind} S}\) is a group homomorphism if composition of the discrete dynamics is taken as the group law of the quantum systems. Systems with trivial index are precisely those which can be realized by partitioned unitaries, and the prototypes of systems with non-trivial index are shifts.  相似文献   

13.
Exact factorized S-matrices are proposed for two models of (1 + 1)-dimensional quantum field theory: the Z(N) symmetric (1 + 1)-dimensional Todd chain and the e? + e?2? model.  相似文献   

14.
It is shown that every function computable in time T(n) and space S(n) on a classical one-dimensional cellular automaton can be computed with certainty in time O(T 1/2 S) and space $n\sqrt T $ on a quantum computer with relative diffusion transforms (RDTs) on parts of intermediate products of classical computation. However, in the general case, RDTs cannot be implemented by the conventional quantum computer even with oracles for intermediate results. Such a function can be computed only in time O(S4 S/2 T/T 1) on the conventional quantum computer with oracles for the intermediate results of classical computations with time T 1.  相似文献   

15.
We establish a one-to-one correspondence between the continuity properties of theS-matrix at the 2-particle threshold and the rate of convergence of the Haag-Ruelle approximations ψ(t) for asymptotic 2-particle states ψ with smooth wavefunctions. It turns out that the norm distance ∥ψ?ψ(t)∥ approaches 0 liktt ?5/4 if theS-matrix has the normal threshold singularities and liket ?3/4 in the exceptional case where the threshold has “absorbed” a bound state. These connections are valid both in relativistic quantum field theory and in non-relativistic models with short range interaction.  相似文献   

16.
We consider integrable quantum spin chains with alternating spins (S1,S2)(S1,S2). We derive a finite set of non-linear integral equations for the thermodynamics of these models by use of the quantum transfer matrix approach. Numerical solutions of the integral equations are provided for quantities like specific heat, magnetic susceptibility and in the case S1=S2S1=S2 for the thermal Drude weight. At low temperatures one class of models shows finite magnetization and the other class presents antiferromagnetic behaviour. The thermal Drude weight behaves linearly on T at low temperatures and is proportional to the central charge c   of the system. Quite generally, we observe residual entropy for S1≠S2S1S2.  相似文献   

17.
We study a frustrated spin-S staggered-dimer Heisenberg model on square lattice by using the bond-operator representation for quantum spins, and investigate the emergence of classical magnetic order from the quantum mechanical (staggered-dimer singlet) ground state for increasing S. Using triplon analysis, we find the critical couplings for this quantum phase transition to scale as 1 /S(S + 1). We extend the triplon analysis to include the effect of quintet dimer-states, which proves to be essential for establishing the classical order (Néel or collinear in the present study) for large S, both in the purely Heisenberg case and also in the model with single-ion anisotropy.  相似文献   

18.
Jet-cooled fluorescence excitation and dispersed fluorescence spectra of 9-methylanthracene (MA), 9-cyanoanthracene (CA) and 9-cyano-10-methylanthracene (CMA) have been measured. The spectra of MA and CMA near the S0-S1 origin reveal a prominent torsional progression due to the hindered methyl group rotation and its torsional vibration against the aromatic ring frame. Additionally, the laser induced fluorescence LIF excitation spectrum of CMA shows the splitting of many vibrational modes.Observed positions and relative intensities of the methyl internal rotational bands were interpreted in terms of transitions calculated based on the quantum mechanical one-dimensional rotor. The low-frequency vibrational bands were interpreted also with the all electron quantum mechanical calculations within the RHF/6-31G(d,p), CIS/3-21G and CIS/6-31G(d,p) approximations. It is predicted that in the case of MA the eclipsed geometry (one C-H in the plane of the ring) is most stable in both S0 and S1 states. Conformation of the methyl group in CMA is suggested to change upon S1 ← S0 excitation (π/12 phase shift of the methyl group). The predicted energy barrier for methyl group rotation in the S0 state of CMA is considerably higher (72 cm−1) than that in the S1 state (22 cm−1). Following the present quantum mechanical calculations, the carbon atom of the methyl group belongs to the aromatic plane in the S0 ground state but it deviates from this plane in the S1 excited state. These in turn suggest that the calculated barrier for methyl group rotation in CMA has a 6-fold symmetry in the S0 ground state and roughly a 4-fold symmetry in the S1 state.  相似文献   

19.
Two models for the production of particles with internal quantum numbers are investigated. They are based on the leading particle approximation. First a unitary isospin invariant S-operator model is constructed for pion production. Then generalized coherent states for particle-antiparticle pairs are introduced from which a statistical operator is derived. Both approaches imply non-vanishing correlation integrals.  相似文献   

20.
A discussion of properties, counters and observables in the framework of a quantum logic is given.We prove the following theorem: Let (P,?,′) be a quantum logic with a strong property (convex subset of states) M. If every M-detectable property (exposed face of M) is detected (exposed) by an expectational counter then every state belonging to M is completely additive.From this result we draw several important conclusions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号