首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The subject of this article is the reconstruction of quantum mechanics on the basis of a formal language of quantum mechanical propositions. During recent years, research in the foundations of the language of science has given rise to adialogic semantics that is adequate in the case of a formal language for quantum physics. The system ofsequential logic which is comprised by the language is more general than classical logic; it includes the classical system as a special case. Although the system of sequential logic can be founded without reference to the empirical content of quantum physical propositions, it establishes an essential part of the structure of the mathematical formalism used in quantum mechanics. It is the purpose of this paper to demonstrate the connection between the formal language of quantum physics and its representation by mathematical structures in a self-contained way.  相似文献   

2.
We establish a connection between measurement-based quantum computation and the field of mathematical logic. We show that the computational power of an important class of quantum states called graph states, representing resources for measurement-based quantum computation, is reflected in the expressive power of (classical) formal logic languages defined on the underlying mathematical graphs. In particular, we show that for all graph state resources which can yield a computational speed-up with respect to classical computation, the underlying graphs—describing the quantum correlations of the states—are associated with undecidable logic theories. Here undecidability is to be interpreted in a sense similar to Gödel’s incompleteness results, meaning that there exist propositions, expressible in the above classical formal logic, which cannot be proven or disproven.  相似文献   

3.
4.
We show that in quantum logic of closed subspaces of Hilbert space one cannot substitute quantum operations for classical (standard Hilbert space) ones and treat them as primitive operations. We consider two possible ways of such a substitution and arrive at operation algebras that are not lattices what proves the claim. We devise algorithms and programs which write down any two-variable expression in an orthomodular lattice by means of classical and quantum operations in an identical form. Our results show that lattice structure and classical operations uniquely determine quantum logic underlying Hilbert space. As a consequence of our result, recent proposals for a deduction theorem with quantum operations in an orthomodular lattice as well as a, substitution of quantum operations for the usual standard Hilbert space ones in quantum logic prove to be misleading. Quantum computer quantum logic is also discussed.  相似文献   

5.
For the first time it is shown that the logic of quantum mechanics can be derived from classical physics. An orthomodular lattice of propositions characteristic of quantum logic, is constructed for manifolds in Einstein’s theory of general relativity. A particle is modelled by a topologically non-trivial 4-manifold with closed timelike curves—a 4-geon, rather than as an evolving 3-manifold. It is then possible for both the state preparationand measurement apparatus to constrain the results of experiments. It is shown that propositions about the results of measurements can satisfy a non-distributive logic rather than the Boolean logic of classical systems. Reasonable assumptions about the role of the measurement apparatus leads to an orthomodular lattice of propositions characteristic of quantum logic.  相似文献   

6.
In contrast to the Copenhagen interpretation we consider quantum mechanics as universally valid and query whether classical physics is really intuitive and plausible. We discuss these problems within the quantum logic approach to quantum mechanics where the classical ontology is relaxed by reducing metaphysical hypotheses. On the basis of this weak ontology a formal logic of quantum physics can be established which is given by an orthomodular lattice. By means of the Solèr condition and Piron's result one obtains the classical Hilbert spaces. However, this approach is not fully convincing. There is no plausible justification of Solèr's law and the quantum ontology is partly too weak and partly too strong. We propose to replace this ontology by an ontology of unsharp properties and conclude that quantum mechanics is more intuitive than classical mechanics and that classical mechanics is not the macroscopic limit of quantum mechanics.  相似文献   

7.
Many scholars maintain that the language of quantum mechanics introduces a quantum notion of truth which is formalized by (standard, sharp) quantum logic and is incompatible with the classical (Tarskian) notion of truth. We show that quantum logic can be identified (up to an equivalence relation) with a fragment of a pragmatic language \(\mathcal {L}_{G}^{P}\) of assertive formulas, that are justified or unjustified rather than trueor false. Quantum logic can then be interpreted as an algebraic structure that formalizes properties of the notion of empirical justification according to quantum mechanics rather than properties of a quantum notion of truth. This conclusion agrees with a general integrationist perspective that interprets nonstandard logics as theories of metalinguistic notions different from truth, thus avoiding incompatibility with classical notions and preserving the globality of logic.  相似文献   

8.
This article reviews the use of single electron spins to compute. In classical computing schemes, a binary bit is represented by the bistable spin polarization of a single electron confined in a quantum dot and subjected to a weak magnetic field. The spin orientation can be either parallel or anti-parallel to the field, so that it becomes a binary variable which can encode logic 0 and logic 1. Coherent superposition of these two polarizations can represent a qubit for quantum computing. By engineering the exchange interaction between closely spaced spins in neighboring quantum dots, it is possible to implement either classical or quantum logic gates.  相似文献   

9.
We consider a semantics based on the peculiar holistic features of the quantum formalism. Any formula of the language gives rise to a quantum circuit that transforms the density operator associated to the formula into the density operator associated to the atomic subformulas in a reversible way. The procedure goes from the whole to the parts against the compositionality-principle and gives rise to a semantic characterization for a new form of quantum logic that has been called “Łukasiewicz quantum computational logic”. It is interesting to compare the logic based on qubit-semantics with that on qudit-semantics. Having in mind the relationships between classical logic and Łukasiewicz-many valued logics, one could expect that the former is stronger than the fragment of the latter. However, this is not the case. From an intuitive point of view, this can be explained by recalling that the former is a very weak form of logic. Many important logical arguments, which are valid either in Birkhoff and von Neumann’s quantum logic or in classical logic, are generally violated.  相似文献   

10.
Do the partial order and ortholattice operations of a quantum logic correspond to the logical implication and connectives of classical logic? Rephrased, How far might a classical understanding of quantum mechanics be, in principle, possible? A celebrated result of Kochen and Specker answers the above question in the negative. However, this answer is just one among various possible ones, not all negative. It is our aim to discuss the above question in terms of mappings of quantum worlds into classical ones, more specifically, in terms of embeddings of quantum logics into classical logics; depending upon the type of restrictions imposed on embeddings, the question may get negative or positive answers.  相似文献   

11.
A characterization of statistical theories is given which incorporates both classical and quantum mechanics. It is shown that each statistical theory induces an associated logic and joint probability structure, and simple conditions are given for the structure to be of a classical or quantum type. This provides an alternative for the quantum logic approach to axiomatic quantum mechanics. The Bell inequalities may be derived for those statistical theories that have a classical structure and satisfy a locality condition weaker than factorizability. The relation of these inequalities to the issue of hidden variable theories for quantum mechanics is discussed and clarified.  相似文献   

12.
In this paper we give a logical analysis of both classical and quantum correlations. We propose a new logical system to reason about the information carried by a complex system composed of several parts. Our formalism is based on an extension of epistemic logic with operators for “group knowledge” (the logic GEL), further extended with atomic sentences describing the results of “joint observations” (the logic LCK). As models we introduce correlation models, as a generalization of the standard representation of epistemic models as vector models. We give sound and complete axiomatizations for our logics, and we use this setting to investigate the relationship between the information carried by each of the parts of a complex system and the information carried by the whole system. In particular we distinguish between the “distributed information”, obtainable by simply pooling together all the information that can be separately observed in any of the parts, and “correlated information”, obtainable only by doing joint observations of the parts (and pooling together the results). Our formalism throws a new light on the difference between classical and quantum information and gives rise to an informational-logical characterization of the notion of “quantum entanglement”.  相似文献   

13.
In this transdisciplinary article which stems from philosophical considerations (that depart from phenomenology??after Merleau-Ponty, Heidegger and Rosen??and Hegelian dialectics), we develop a conception based on topological (the Moebius surface and the Klein bottle) and geometrical considerations (based on torsion and non-orientability of manifolds), and multivalued logics which we develop into a unified world conception that surmounts the Cartesian cut and Aristotelian logic. The role of torsion appears in a self-referential construction of space and time, which will be further related to the commutator of the True and False operators of matrix logic, still with a quantum superposed state related to a Moebius surface, and as the physical field at the basis of Spencer-Brown??s primitive distinction in the protologic of the calculus of distinction. In this setting, paradox, self-reference, depth, time and space, higher-order non-dual logic, perception, spin and a time operator, the Klein bottle, hypernumbers due to Musès which include non-trivial square roots of ±1 and in particular non-trivial nilpotents, quantum field operators, the transformation of cognition to spin for two-state quantum systems, are found to be keenly interwoven in a world conception compatible with the philosophical approach taken for basis of this article. The Klein bottle is found not only to be the topological in-formation for self-reference and paradox whose logical counterpart in the calculus of indications are the paradoxical imaginary time waves, but also a classical-quantum transformer (Hadamard??s gate in quantum computation) which is indispensable to be able to obtain a complete multivalued logical system, and still to generate the matrix extension of classical connective Boolean logic. We further find that the multivalued logic that stems from considering the paradoxical equation in the calculus of distinctions, and in particular, the imaginary solutions to this equation, generates the matrix logic which supersedes the classical logic of connectives and which has for particular subtheories fuzzy and quantum logics. Thus, from a primitive distinction in the vacuum plane and the axioms of the calculus of distinction, we can derive by incorporating paradox, the world conception succinctly described above.  相似文献   

14.
A family of quantum logic gates is proposed via superconducting (SC) qubits coupled to a SC-cavity. The Hamiltonian for SC-charge qubits inside a single mode cavity is considered. Three- and two-qubit operations are generated by applying a classical magnetic field with the flux. Therefore, a number of quantum logic gates are realized. Numerical simulations and calculation of the fidelity are used to prove the success of these operations for these gates.  相似文献   

15.
A general “logical” scheme, containing both classical and quantum mechanics, is developed on the basis of plausible axioms. We introduce the division of states and yes-no measurements into sharp and diffuse ones, and prove that sharp states possess their carriers. Owing to this result, the existence of lattice joins and meets is proved for a wide class of elements of the logic. This “semi-lattice” structure gives the familiar lattice picture for special cases of classical and quantum mechanics. The notion of quantum superposition is introduced in this general scheme. It is proved that if in a theory appear nontrivial quantum superpositions, then this theory is “undeterministic” and vise versa. Further analysis of the pure state space leads to the construction of the canonical embedding of the general logic into an orthomodular complete ortho-lattice. After defining the probability of transition between pure states, the pure state space appears to be a generalization of Mielnik's “probability space” of quantum mechanics.  相似文献   

16.
Inspired by Ying’s work on automata theory based on quantum logic and classical automata theory, we introduce the concepts of reversal, accessible, coaccessible and complete part of finite state automata based on quantum logic. Some properties of them are discussed. More importantly we investigate the recognizability and accessibility properties of these types on the framework of quantum logic by employing the approach of semantic analysis. Foundation: supported by the National Natural Science Foundation of China (No. 10671030).  相似文献   

17.
The logic of a physical system consists of the elementary observables of the system. We show that for chaotic systems the logic is not any more the classical Boolean lattice but a kind of fuzzy logic which we characterize for a class of chaotic maps. Among other interesting properties the fuzzy logic of chaos does not allow for infinite combinations of propositions. This fact reflects the instability of dynamics and it is shared also by quantum systems with diagonal singularity. We also generalize the fuzzy implication to a probabilistic implication following the hint of von Neumann. In this way we can evaluate the probability of the validity of the logical inference.  相似文献   

18.
The von Neumann quantum logic lacks two basic symmetries of classical logic, that between sets and classes, and that between lower and higher order predicates. Similarly, the structural parallel between the set algebra and linear algebra of Grassmann and Peano was left incomplete by them in two respects. In this work a linear algebra is constructed that completes this correspondence and is interpreted as a new quantum logic that restores these invariances, and as a quantum set theory. It applies to experiments with coherent quantum phase relations between the quantum and the apparatus. The quantum set theory is applied to model a Lorentz-invariant quantum time-space complex.  相似文献   

19.
The first three of these axioms describe quantum theory and classical mechanics as statistical theories from the very beginning. With these, it can be shown in which sense a more general than the conventional measure theoretic probability theory is used in quantum theory. One gets this generalization defining transition probabilities on pairs of events (not sets of pairs) as a fundamental, not derived, concept. A comparison with standard theories of stochastic processes gives a very general formulation of the non existence of quantum theories with hidden variables. The Cartesian product of probability spaces can be given a natural algebraic structure, the structure of an orthocomplemented, orthomodular, quasi-modular, not modular, not distributive lattice, which can be compared with the quantum logic (lattice of all closed subspaces of an infinite dimensional Hubert space). It is shown how our given system of axioms suggests generalized quantum theories, especially Schrödinger equations, for phase space amplitudes.  相似文献   

20.
An holistic extension for classical propositional logic is introduced in the framework of quantum computation with mixed states. The mentioned extension is obtained by applying the quantum Fredkin gate to non-factorizable bipartite states. In particular, an extended notion of classical contradiction is studied in this holistic framework.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号