首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(methyl methacrylate) (PMMA) was anchored to multiporous poly(vinylidine fluoride) (PVDF) surface via electron beam preirradiation grafting technique to prepare PVDF/PMMA brushes. The conformation of the PVDF/PMMA brushes was verified through Attenuated total reflection‐Fourier transform infra red spectroscopy (ATR‐FTIR), energy dispersive X‐ray spectroscopy (EDX), and scanning electron microscopy (SEM). Thermal stability of PVDF/PMMA brushes was characterized by thermo gravimetric analysis (TGA). The degradation of PVDF/PMMA brushes showed a two‐step pattern. PVDF/PMMA brushes membrane could be used as polymer electrolyte in lithium‐ion rechargeable batteries after it was activated by uptaking 1 M LiPF6/EC‐DMC (ethylene carbonate/dimethyl carbonate; EC:DMC = 1:1 by volume) electrolyte solution. The activated membrane showed high ionic conductivity, 6.1 × 10?3 S cm?1 at room temperature, and a good electrochemical stability up to 5.0 V. The excellent performances of multiporous PVDF‐g‐PMMA membranes suggest that they are suitable for application in high‐performance lithium‐ion batteries. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 751–758, 2008  相似文献   

2.
A new plasticized nanocomposite polymer electrolyte based on poly (ethylene oxide) (PEO)-LiTf dispersed with ceramic filler (Al2O3) and plasticized with propylene carbonate (PC), ethylene carbonate (EC), and a mixture of EC and PC (EC+PC) have been studied for their ionic conductivity and thermal properties. The incorporation of plasticizers alone will yield polymer electrolytes with enhanced conductivity but with poor mechanical properties. However, mechanical properties can be improved by incorporating ceramic fillers to the plasticized system. Nanocomposite solid polymer electrolyte films (200–600 μm) were prepared by common solvent-casting method. In present work, we have shown the ionic conductivity can be substantially enhanced by using the combined effect of the plasticizers as well as the inert filler. It was revealed that the incorporating 15 wt.% Al2O3 filler in to PEO: LiTf polymer electrolyte significantly enhanced the ionic conductivity [σ RT (max)?=?7.8?×?10?6 S cm?1]. It was interesting to observe that the addition of PC, EC, and mixture of EC and PC to the PEO: LiTf: 15 wt.% Al2O3 CPE showed further conductivity enhancement. The conductivity enhancement with EC is higher than PC. However, mixture of plasticizer (EC+PC) showed maximum conductivity enhancement in the temperature range interest, giving the value [σ RT (max)?=?1.2?×?10?4 S cm?1]. It is suggested that the addition of PC, EC, or a mixture of EC and PC leads to a lowering of glass transition temperature and increasing the amorphous phase of PEO and the fraction of PEO-Li+ complex, corresponding to conductivity enhancement. Al2O3 filler would contribute to conductivity enhancement by transient hydrogen bonding of migrating ionic species with O–OH groups at the filler grain surface. The differential scanning calorimetry thermograms points towards the decrease of T g , crystallite melting temperature, and melting enthalpy of PEO: LiTf: Al2O3 CPE after introducing plasticizers. The reduction of crystallinity and the increase in the amorphous phase content of the electrolyte, caused by the filler, also contributes to the observed conductivity enhancement.  相似文献   

3.
Indium–zinc oxide (IZO) thin films were fabricated by spin coating using acetate- and nitrate-based precursors, and thin film transistors (TFTs) were further fabricated employing the IZO films as the active channel layer. The impact of the indium concentration on the properties of the solutions, the structure and optical transmittance properties of the IZO films and the IZO TFTs device properties were researched in this article. The IZO films with amorphous structure were obtained when the annealing temperature is 500 °C. The transmittance could reach ~90 % (including glass substrate) during the visible region of 400–760 nm. Higher indium concentration can improve the IZO TFTs’ filed effect mobility. A Ion–Ioff of 6.0 × 106 and a mobility of 0.13 cm2/Vs were obtained when the indium concentration is 60 %. IZO TFTs’ performance could deteriorate when the indium concentration more than 60 %.  相似文献   

4.
室温离子液体增塑的纳米复合聚合物电解质研究   总被引:2,自引:0,他引:2  
李朝晖  蒋晶  张汉平  吴宇平 《化学学报》2007,65(14):1333-1337
在室温离子液体N-乙基-N'-甲基咪唑四氟硼酸盐(EMIBF4)增塑的凝胶聚合物电解质中加入氧化铝纳米粒子, 制备了一种纳米复合聚合物电解质(nanocomposite polymer electrolyte, NCPE). 通过示差扫描量热(DSC)、X射线衍射(XRD)、热重分析(TGA)、电化学阻抗谱(EIS)等手段对其进行了表征. 结果显示, 随着氧化铝纳米粒子含量的增加, NCPE的结晶度降低, 离子导电率升高. 但是, 纳米粒子的加入量过大时反而引起NCPE的离子导电率降低. 当纳米粒子填充量为w=10%时, NCPE具有最高的室温离子导电率1.25×10-3 S•cm-1.  相似文献   

5.
In the present work, boron-doped multicomponent gel polymer electrolytes composed of host polymer, sulfonated polysulfone (SPSU) and the additives; ionic liquid, 1-ethyl-3-methyl-imidazolium tetrafluoroborate (IL), H3BO3, polyphosphoric acid (PPA) were prepared. Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) techniques were used to characterize the sulfonated polysulfone-based electrolytes. Ion conductivity of these gel electrolytes were studied by dielectric impedance analyzer within the temperature from ?20 to 100°C. The ionic conductivity of the SPSU-5IL-1PPA and SPSU-5IL-1H3BO3-1PPA were measured as 4.8 × 10?3 and 9 × 10?4 S cm?1, respectively. Supercapacitor having activated carbon-based composite electrode and electrolyte was constructed with the configuration: Al/C/electrolyte/C/Al. The electrochemical properties and ion transfer characteristics of the supercapacitor were investigated by the cyclic voltammetry (CV). Galvanostatic charge—discharge experiments exhibited good electrochemical reversibility and produced a specific capacitance value of 120 F g?1 at 1 A g?1. The symmetric supercapacitor system was retained almost 85% of its initial activity after 1000 cycle.  相似文献   

6.
In an attempt to prepare a polymeric solid electrolyte with both high ionic conductivity at ambient temperature and adequate mechanical strength, an ionic conducting IPN composed of bisphenol A epoxy resin/polyethylene glycol containing LiClO_4 was synthesized. The dependence of conductivity was investigated as a function of salt content, composition and temperature. It has been revealed that a maximum of conductivity appeared when EO/Li=25, where EO denotes the—(CH_2CH_2O)-unit in polyethylene glycol, and that the temperature dependence of conductivity followed VTF equation, suggesting that the motion of ionic carriers resulted from the segmental motion of the polymer. When glycerol epoxy resin was used instead of bisphenol A epoxy, the ambient temperature (25℃) conductivity could somewhat further be raised up to 3×10~(-5) S/cm.  相似文献   

7.
《印度化学会志》2023,100(4):100959
The polymer-ceramic composite electrolytes have great application potential for next-generation solid state lithium batteries, as they have the merits to eliminate the problem of liquid organic electrolytes and enhancing chemical/electrochemical stability. However, polymer-ceramic composite electrolytes show poor ionic conductivity, which greatly hinders their practical applications. In this work, the addition of plasticizer ethylene carbonate (EC) into polymer-ceramic composite electrolyte for lithium batteries effectively promotes the ionic conductivity. A high ionic conductivity can be attained by adding 40 wt% EC to the polyethylene oxide (PEO)/polyvinylidene fluoride (PVDF)-Li7La3Zr2O12 (LLZO) based polymer-ceramic composite electrolytes, which is 2.64 × 10−4 S cm−1 (tested at room temperature). Furthermore, the cell assembled with lithium metal anode, this composite electrolyte, and LiFePO4 cathode can work more than 80 cycles at room temperature (tested at 0.2 C). The battery delivers a high reversible specific capacity after 89 cycles, which is 119 mAh g−1.  相似文献   

8.
The iodide removal from aqueous solutions (initial I?-concentration: 300–5,000 mg/L) by a low and a high molecular weight polyethylenimine-epichlorohydrin resin was investigated both in absence and presence of background electrolytes (NaCl and Na2SO4, ionic strength due to background electrolyte 0.1 M) using a batch technique, 131I as radioactive tracer and high-resolution γ-ray spectrometry. The experiments in absence of background electrolyte were performed using solutions of initial pH 3 and 7, whereas those in presence using solutions of initial pH 3. The results, which demonstrated the high iodide-removal efficiency of both resins, were modeled using the Langmuir and Freundlich isotherm equations. The experimental data were better reproduced using the Langmuir equation. Using this equation maximum sorption capacity values (Q max) of 638.8 and 603.3 mg/g were obtained for the high molecular weight resin from solutions of initial pH 3 and 7 respectively, whereas the corresponding values for the low molecular weight one were slightly lower (552.4 and 507.5 mg/g respectively). The iodide uptake by the resins strongly depended on the presence of competing anions and especially of sulfates. The examination of sections of the I-loaded resins grains by scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) revealed that iodine was evenly distributed throughout the bulk of the resins and not only bound to their surface.  相似文献   

9.
New segmented polyurethanes with perfluoropolyether (PFPE) and poly(ethylene oxide) blocks were synthesized from a fluorinated macrodiol mixed with poly(ethylene glycol) (PEG) in different ratios as a soft segment, 2,4‐toluene diisocyanate as a hard segment, and ethylene glycol as a chain extender. Fourier transform infrared, NMR, and thermal analysis [differential scanning calorimetry and thermogravimetric analysis (TGA)] were used to characterize the structures of these copolymers. The copolymer films were immersed in a liquid electrolyte (1 M LiClO4/propylene carbonate) to form gel‐type electrolytes. The ionic conductivities of these polymer electrolytes were investigated through changes in the copolymer composition and content of the liquid electrolyte. The relative molar ratio of PFPE and PEG in the copolymer played an important role in the conductivity and the capacity to retain the liquid electrolyte solution. The copolymer with a 50/50 PFPE/PEG ratio, having the lowest decomposition temperature shown by TGA, exhibited the highest ionic conductivity and lowest activation energy for ion transportation. The conductivities of these systems were about 10?3 S cm?1 at room temperature and 10?2 S cm?1 at 70 °C; the films immersed in the liquid electrolyte with an increase of 70 wt % were homogenous with good mechanical properties. © 2002 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 486–495, 2002; DOI 10.1002/pola.10119  相似文献   

10.
Electrochemical properties of LiNiO2|Li and LiNiO2|graphite cells were analysed in ionic liquid electrolyte [Li+][MePrPyrr+][NTf2-] (based on N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulphonyl)imide, [MePrPyrr+][NTf2-]) using impedance spectroscopy and galvanostatic techniques. The ionic liquid is incapable of protective solid electrolyte interface (SEI) formation on metallic lithium or lithiated graphite. However, after addition of VC, the protective coating is formed, facilitating a proper work of the Li-ion cell. Scanning electron microscopy images of pristine electrodes and those taken after electrochemical cycling showed changes which may be interpreted as a result of SEI formation. The charging/discharging capacity of the LiNiO2 cathode is between 195 and 170 mAh g−1, depending on the rate. The charging/discharging efficiency of the graphite anode drops after 50 cycles from an initial value of ca. 360 mAh g−1 to stabilise at 340 mAh g−1. The replacement of a classical electrolyte in molecular liquids (cyclic carbonates) with an electrolyte based on the MePrPyrrNTf2 ionic liquid highly increases in the cathode/electrolyte non-flammability.  相似文献   

11.
Quaternary polymer electrolyte (PE) based on poly(acrylonitrile) (PAN), 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid (EMImBF4), sulfolane (TMS) and lithium hexafluorophosphate salt (LiPF6) (PAN-EMImBF4-sulfolane-LIPF6) was prepared by the casting technique. Obtained PE films of ca. 0.2–0.3 mm in thickness showed good mechanical properties. They were examined using scanning electron microscopy (SEM), thermogravimetry (TGA, DSC), the flammability test, electrochemical impedance spectroscopy (EIS) and galvanostatic charging/discharging. SEM images revealed a structure consisting of a polymer network (PAN) and space probably occupied by the liquid phase (LiPF6 + EMImBF4 + sulfolane). The polymer electrolyte in contact with an outer flame source did not ignite; it rather underwent decomposition without the formation of flammable products. Room temperature specific conductivity was ca. 2.5 mS cm?1. The activation energy of the conding process was ca. 9.0 kJ mol?1. Compatibility of the polymer electrolyte with metallic lithium and graphite anodes was tested applying the galvanostatic method. Charge transfer resistance for the C6Li → Li+ + e? anode processes, estimated from EIS curve, was ca. 48 Ω. The graphite anode capacity stabilizes at ca. 350 mAh g?1 after the 30th cycle (20 mA g?1).  相似文献   

12.
Organic-inorganic hybrid membranes based on poly(ethylene oxide) (PEO) 6.25 wt%/poly(vinylidene fluoride hexa fluoro propylene) [P(VdF-HFP)] 18.75 wt% were prepared by using various concentration of nanosized barium titanate (BaTiO3) filler. Structural characterizations were made by X-ray diffraction and Fourier transform infrared spectroscopy, which indicate the inclusion of BaTiO3 in to the polymer matrix. Addition of filler creates an effective route of polymer-filler interface and promotes the ionic conductivity of the membranes. From the ionic conductivity results, 6 wt% of BaTiO3-incorporated composite polymer electrolyte (CPE) showed the highest ionic conductivity (6 × 10?3 Scm?1 at room temperature). It is found that the filler content above 6 wt% rendered the membranes less conducting. Morphological images reveal that the ceramic filler was embedded over the membrane. Thermogravimetric and differential thermal analysis (TG-DTA) of the CPE sample with 6 wt% of the BaTiO3 shows high thermal stability. Electrochemical performance of the composite polymer electrolyte was studied in LiFePO4/CPE/Li coin cell. Charge-discharge cycle has been performed for the film exhibiting higher conductivity. These properties of the nanocomposite electrolyte are suitable for Li-batteries.  相似文献   

13.
The graphene anode was investigated in an ionic liquid electrolyte (0.7 M lithium bis(trifluoromethanesulfonyl)imide (LiNTf2)) in room temperature ionic liquid (N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide (MPPyrNTf2)). SEM and TEM images suggested that the electrochemical intercalation/deintercalation process in the ionic liquid electrolyte without vinylene carbonate (VC) leads to small changes on the surface of graphene particles. However, a similar process in the presence of VC results in the formation of a coating (SEI—solid electrolyte interface) on the graphene surface. During charging/discharging tests, the graphene electrode working together with the 0.7 M LiNTf2 in MPPyrNTf2 electrolyte lost its capacity, during cycling and stabilizes at ca. 200 mAh g?1 after 20 cycles. The addition of VC to the electrolyte (0.7 M LiNTf2 in MPPyrNTf2?+?10 wt.% VC) considerably increases the anode capacity. Electrodes were tested at different current regimes: ranging between 50 and 1,000 mA g?1. The capacity of the anode, working at a low current regime of 50 mA g?1, was ca. 1,250 mAh g?1, while the current of 500 mA g?1 resulted in capacity of 350 mAh g?1. Coulombic efficiency was stable and close to 95 % during ca. 250 cycles. The exchange current density, obtained from impedance spectroscopy, was 1.3?×?10?7 A cm?2 (at 298 K). The effect of the anode capacity decrease with increasing current rate was interpreted as the result of kinetic limits of the electrode operation.  相似文献   

14.
An electrochromic liquid crystal (ECLC) material composed of only liquid crystal (LC) and ionic liquid (IL) was developed. The LC containing the substituted diphenylacetylene serves as electrochromic (EC) material to realise transmittance and colour change under the direct current (DC) field, while the IL with the designable cation and anion served as electrolyte. Herein, a series of IL electrolytes was screened to investigate how IL tunes the electro-optic performance of the ECLC cell. By testing the electrochemistry window of ILs in EC cells, IL with the [NTf2]? anion shows adequate electrochemical stability when the EC material undergoes oxidation and reduction. The electro-optic performance of ECLC containing 1-ethoxy-4-[2-(4-pentylphenyl) ethynyl]-benzene (PEB) and IL was then evaluated by UV-vis spectrometry under the control of an electrochemical work station. Compared with other PEB-IL, PEB-[Bmim][NTf2] with [Bmim][NTf2] electrolyte shows a satisfactory transmittance at low operating voltage. Furthermore, Pd NPs in situ formed in [Bmim][NTf2] reduced the EC potential and improved the light scattering of the ECLC cell. In this work, we also designed a bifunctional device based on polymer dispersed liquid crystal (PDLC) that hosts electrochromic guest molecules, and analysed the electro-optical and electrochromic properties of LC electrolyte mixtures, in order to gain control of the incident daylight and glare in building and automotive applications.  相似文献   

15.
A proton-conducting nanocomposite gel polymer electrolyte (GPE) system, [35{(25 poly(methylmethacrylate) (PMMA) + 75 poly(vinylidenefluoride-co-hexafluoropropylene) (PVdF-HFP))?+?xSiO2}?+?65{1 M NH4SCN in ethylene carbonate (EC) + propylene carbonate (PC)}], where x?=?0, 1, 2, 4, 6, 8, 10, and 12, has been reported. The free standing films of the gel electrolyte are obtained by solution cast technique. Films exhibit an amorphous and porous structure as observed from X-ray diffractometry (XRD) and scanning electron microscopy (SEM) studies. Fourier transform infrared spectrophotometry (FTIR) studies indicate ion–filler–polymer interactions in the nanocomposite blend GPE. The room temperature ionic conductivity of the gel electrolyte has been measured with different silica concentrations. The maximum ionic conductivity at room temperature has been observed as 4.3?×?10?3?S?cm?1 with 2 wt.% of SiO2 dispersion. The temperature dependence of ionic conductivity shows a typical Vogel-Tamman-Fulcher (VTF) behavior. The electrochemical potential window of the nanocomposite GPE film has been observed between ?1.6 V and 1.6 V. The optimized composition of the gel electrolyte has been used to fabricate a proton battery with Zn/ZnSO4·7H2O anode and PbO2/V2O5 cathode. The open circuit voltage (OCV) of the battery has been obtained as 1.55 V. The highest energy density of the cell has been obtained as 6.11 Wh?kg?1 for low current drain. The battery shows rechargeability up to 3 cycles and thereafter, its discharge capacity fades away substantially.  相似文献   

16.
Three‐dimensional hierarchical porous graphene/carbon composite was successfully synthesized from a solution of graphene oxide and a phenolic resin by using a facile and efficient method. The morphology, structure, and surface property of the composite were investigated intensively by a variety of means such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption, Raman spectroscopy, and Fourier transform infrared spectroscopy (FTIR). It is found that graphene serves as a scaffold to form a hierarchical pore texture in the composite, resulting in its superhigh surface area of 2034 m2g?1, thin macropore wall, and high conductivity (152 S m?1). As evidenced by electrochemical measurements in both EMImBF4 ionic liquid and KOH electrolyte, the composite exhibits ideal capacitive behavior, high capacitance, and excellent rate performance due to its unique structure. In EMImBF4, the composite has a high energy density of up to 50.1 Wh kg?1 and also possesses quite stable cycling stability at 100 °C, suggesting its promising application in high‐temperature supercapacitors. In KOH electrolyte, the specific capacitance of this composite can reach up to an unprecedented value of 186.5 F g?1, even at a very high current density of 50 A g?1, suggesting its prosperous application in high‐power applications.  相似文献   

17.
Solid polymer electrolyte membranes were prepared by complexing tetrapropylammoniumiodide (Pr4N+I?) salt with polyethylene oxide (PEO) plasticized with ethylene carbonate (EC), and these were used in photoelectrochemical (PEC) solar cells fabricated with the configuration glass/FTO/TiO2/dye/electrolyte/Pt/FTO/glass. The PEO/Pr4N+I?+I2?=?9:1 ratio gave the best room temperature conductivity for the electrolyte. For this composition, the plasticizer EC was added to increase the conductivity, and a further conductivity enhancement of four orders of magnitude was observed. An abrupt increase in conductivity occurs around 60–70 wt% EC; the room temperature conductivity was 5.4?×?10?7 S cm?1 for 60 wt% EC and 4.9?×?10?5 S cm?1 for the 70 wt% EC. For solar cells with electrolytes containing PEO/Pr4N+I?+I2?=?9:1 and EC, IV curves and photocurrent action spectra were obtained. The photocurrent also increased with increasing amounts of EC, up to three orders of magnitude. However, the energy conversion efficiency of this cell was rather low.  相似文献   

18.
A hybrid of polymer/dispersed single-wall carbon nanotubes was utilized in networking a novel composition of gel electrolyte in dye-sensitized solar cells. The gel is composed of polyethylene glycol, polyvinyl pyrrolidone, single-wall carbon nanotubes, and I?/I3 ? as electrolyte. Formation of the less conductive polyiodide species in electrolyte was prohibited by the addition of single-wall carbon nanotubes leading to the excellent photovoltaic behavior of the cell under simulated standard illumination of the fabricated device owing to the increased open circuit voltage (0.47 V). Electrochemical impedance spectroscopy was employed to quantify the charge transport resistance and the electron lifetime at the TiO2 conduction band. Charge transport resistances at the TiO2/dye/electrolyte interface were determined for the cells consisting of the non-gel reference and our new gel electrolytes, and it was indicated that the charge recombination between injected electrons and electron acceptors (I3 ?) in the redox electrolyte was remarkably retarded. Electrochemical parameters obtained by the fitting showed all of the resistances increased as compared to liquid electrolyte dye-sensitized solar cells that can be related to the increase in viscosity of the gel, which hinders the ionic transportation through the electrolyte. These results were also confirmed by the electron lifetime analyses. The characteristic peak shifted to a lower frequency in the Bode phase plot for the cell containing gel electrolyte which is an indication of a longer electron lifetime in comparison with that of the cell containing very conventional liquid electrolyte.  相似文献   

19.
Zn-Ti-O composite thin film prepared on FTO by sol-gel technique is discovered presenting electrochromic behavior in electrolytes with Li+ ion (LiClO4) and K+ (KCl) as well. The observed EC colored/bleached switching is electrolyte dependent which is blue-green/transparent in LiClO4 and gray-blue/transparent in KCl, respectively. Accordantly, the respective most optical modulation (ΔT) between colored and bleached states is ~?32% (710 nm) in LiClO4 and ~?37% (600 nm) in KCl. The finding of appreciable steady EC durability with appealing visual optical contrast (ΔT) in conventionally fabricated Zn-Ti-O thin film using with bigger/heavier K+ electrolyte helps expanding the applicable components in EC device.  相似文献   

20.
In the present work, nanofibrous composite polymer electrolytes consist of polyethylene oxide (PEO), ethylene carbonate (EC), propylene carbonate (PC), lithium perchlorate (LiClO4), and titanium dioxide (TiO2) were designed using response surface method (RSM) and synthesized via an electrospinning process. Morphological properties of the as‐prepared electrolytes were studied using SEM. FTIR spectroscopy was conducted to investigate the interaction between the components of the composites. The highest room temperature ionic conductivity of 0.085 mS.cm?1 was obtained with incorporation of 0.175 wt. % TiO2 filler into the plasticized nanofibrous electrolyte by EC. Moreover, the optimum structure was compared with a film polymeric electrolyte prepared using a film casting method. Despite more amorphous structure of the film electrolyte, the nanofibrous electrolyte showed superior ion conductivity possibly due to the highly porous structure of the nanofibrous membranes. Furthermore, the mechanical properties illustrated slight deterioration with incorporation of the TiO2 nanoparticles into the electrospun electrolytes. This investigation indicated the great potential of the electrospun structures as all‐solid‐state polymeric electrolytes applicable in lithium ion batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号