首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
In a previous study on matrix‐assisted laser desorption ionization (MALDI) of peptides using α‐cyano‐4‐hydroxycinnamic acid (CHCA) as a matrix, we found that the patterns of single‐shot spectra obtained under different experimental conditions became similar upon temperature selection. In this paper, we report that absolute ion abundances are also similar in temperature‐selected MALDI spectra, even when laser fluence is varied. The result that has been obtained using CHCA and 2,5‐dihydroxybenzoic acid as matrices is in disagreement with the hypothesis of laser‐induced ionization of matrix as the mechanism for primary ion formation in MALDI. We also report that the total number of ions in such a spectrum is unaffected by the identity, concentration and number of analytes, i.e. it is the same as that in the spectrum of pure matrix. We propose that the generation of gas‐phase ions in MALDI can be explained in terms of two thermal reactions, i.e. the autoprotolysis of matrix molecules and the matrix‐to‐analyte proton transfer, both of which are in quasi‐equilibrium in the early matrix plume. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
2‐[(2E)‐3‐(4‐tert‐Butylphenyl)‐2‐methylprop‐2‐enylidene]malononitrile (DCTB) has been considered as an excellent matrix for matrix‐assisted laser desorption/ionization (MALDI) of many types of synthetic compounds. However, it might provide troublesome results for compounds containing aliphatic primary or secondary amino groups. For these compounds, strong extra ion peaks with a mass difference of 184.1 Da were usually observed, which might falsely indicate the presence of some unknown impurities that were not detected by other matrices. On the basis of the possible mechanisms proposed, these extra ions are the products of nucleophilic reactions between analyte amino groups and DCTB molecules or radical cations. In these reactions, an amino group replaces the dicyanomethylene group of DCTB forming a matrix adduct via a ? C?N‐bond. An aliphatic primary amine could react easily with DCTB and the reaction could start once they are mixed in a MALDI solution. For an aliphatic secondary amine, on the other hand, the reaction most likely occurs in the gas phase. Protonation of amino groups by adding acid seems to be a useful way to stop DCTB adduction for compounds with one single amino group, but not for compounds with multiple amino groups. Unlike aliphatic primary or secondary amines, aliphatic tertiary amines and aromatic amines do not yield DCTB adducts. This is because tertiary amines do not have the required transferrable H‐(N) atom to form an extra ? C?N‐bond, while aromatic amines are not sufficiently nucleophilic to attack DCTB. In view of the possible matrix adduction, care should be taken in MALDI time‐of‐flight mass spectrometry (TOF MS) when DCTB is used as the matrix for compounds containing amino group(s). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
In this work the effect in secondary ion mass spectrometry (SIMS) of several frequently used matrix‐assisted laser desorption/ionisation (MALDI) matrices on the secondary ion intensities of low molecular weight (m/z 400–800) organic dyes and a pharmaceutical is tested. Matrix (10?1 M) and analyte (10?2 M) solutions were made in methanol. Mixtures with several concentration ratios were prepared from these solutions and spincoated on Si substrates prior to time‐of‐flight (TOF)‐SIMS analysis. In some cases the presence of the MALDI matrices caused a considerable increase in the positive secondary (protonated) molecular ion signals. Enhancements of a factor of 20 and more were recorded. Generally, of the matrices used, 2,5‐dihydroxybenzoic acid and 2,4,6‐trihydroxyacetophenone brought about the highest intensity increases. It was also shown that matrix‐enhanced (ME‐)SIMS is capable of lowering the detection limits for molecule ions. However, the enhancement effect is strongly influenced by the analyte/matrix combination and its concentration ratio. As a result, finding an optimal analyte/matrix mixture can be a very time‐consuming process. Mostly, the presence of the matrices causes changes in the relative ion intensities in the TOF‐S‐SIMS spectra. Compared to the spectra recorded from samples without matrices, only a few additional peaks, such as signals that originate directly from the applied matrix or adduct ions, are observed in the mass spectra. Sometimes molecule ions and some characteristic fragments at high m/z values, that cannot be recorded without matrix, do appear in the spectrum when a matrix is present. In the negative mode no enhancement effect is observed on applying the studied MALDI matrices. The results obtained from samples treated with MALDI matrices are also compared to SIMS results for the same samples after Ag and Au metallisation (MetA‐SIMS). For three of the four tested compounds Au MetA‐SIMS resulted in higher ion yields than ME‐SIMS. For both techniques possible mechanisms that can account for the enhancement effect are proposed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
The gas-phase basicities of monomeric and dimeric deprotonated ferulic and sinapic acids, common matrix-assisted laser desorption/ionization (MALDI) matrices, were determined. A new bracketing method based on structure-reactivity correlations was developed for deriving gas-phase basicities from reaction efficiencies. The matrix dimer anions were found to be significantly less basic than the monomer anions, by about 115 kJ/mol. The low basicity of the dimer anion can qualitatively be explained by resonance stabilization. The energies for proton transfer from dimers to monomers are therefore about 1.2 eV lower than for proton transfer between monomers. For the MALDI process, proton transfer reactions involving matrix dimers provide a low energy pathway for matrix and analyte ion formation.  相似文献   

5.
In the matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI TOF MS) analysis of some quaternary ammonium salts (QASs), very clean spectra of the quaternary ammonium ions were recorded with a strong matrix suppression effect (MSE). The QASs also showed a considerable analyte suppression effect (ASE). It was demonstrated that the MSE and ASE of the QASs can be explained well by the cluster ionization model. According to this model, MALDI ions are formed from charged matrix/analyte clusters. Various analyte ions and matrix ions might coexist in the cluster, and they will compete for the limited number of net charges available. If enough quaternary ammonium ions are present in the cluster, they will take away the net charges, thus resulting in the MSE and ASE. Our results also suggest that ‘the cluster ionization model’ is not in conflict with ‘the theory of ionization via secondary gas‐phase reactions’. The initial MALDI ions produced from charged matrix/analyte clusters will collide with other molecules or ions in the MALDI plume. Depending on the properties of the initial ions and the composition of the MALDI plume, secondary gas‐phase reactions might result from these collisions. The final ions observed are the combined results of ‘cluster ionization’ and ‘ionization via secondary gas‐phase reactions’. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Room temperature ionic liquids (ILs) are effective matrices in secondary ion mass spectrometry (SIMS) and matrix assisted laser desorption ionization (MALDI). In this paper, we examine the role of proton transfer in the mechanism of secondary ion enhancement using IL matrices in SIMS. We employ hydrogenated and deuterated 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) as analytes to investigate the origin of proton transfer. The data indicate that protons from the IL anion transfer to the analyte in solution leading to an increase in the secondary ion intensity of the protonated molecular ion. The chemical identity of the matrix cation also affects analyte signal intensities. Using deuterated DPPC we observe that protons (deuterium) from the DPPC tail group react with the cation of the IL liquid leading to an increase in (cation + D)+ ion intensities. Further, the data suggest that the transfer kinetics of deuterium (hydrogen) is correlated with the secondary ion enhancements observed. The highest secondary ion enhancements are observed for the least sterically hindered cation. Neither the proton affinity nor the pKa of the IL cation have a large effect on the analyte ion intensities, suggesting that steric factors are important in determining the efficacy of IL matrices for a given analyte.   相似文献   

7.
Aquatic fulvic acids (AFAs) are demonstrated to be effective matrices for the analysis of various polar compounds (ranging from 100–1500 Da) by matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOFMS). The efficiency of AFA as a matrix is shown for a wide range of test compounds, including a number of carbohydrates, cyclodextrins and peptides, with typical detection limits of ~10 µg mL?1. The propensity of AFA to enhance ionization through protonation of peptides, and formation of sodium and potassium adducts of carbohydrates and polyethylene glycol, was noted. Differences were observed in the performances of the two AFA matrices used, a Suwannee River, International Humic Substances Society (IHSS) standard and a locally extracted fulvic acid (LFA). For example, in the analysis of carbohydrate standards, the use of the LFA matrix typically doubled the analyte ion signal intensities and resulted in signal‐to‐noise (S/N) ratios that were 2–4 times better than when the Suwannee River AFA matrix was used. AFA was also used in the analysis of real‐world samples without extraction or purification; cantaloupe juice and acetaminophen tablets were analyzed, and glucose and acetaminophen could easily be identified as respective components. When lower concentrations of fulvic acid were used in the presence of sugars, a reversal of roles was observed in which the sugars functioned as the matrix and significantly enhanced ionization of the AFA components, while ions associated with the sugars themselves were suppressed or absent. Effective as a matrix for a variety of analytes and widely available, AFA is an attractive environmentally friendly choice for use in MALDI applications. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
2,4‐, 2,5‐, 2,6‐ and 3,5‐dihydroxyacetophenone (DHA) used as matrices in matrix‐assisted ultraviolet laser desorption/ionization mass spectrometry (UV‐MALDI‐MS) were studied by steady‐state and transient absorption spectroscopy, together with DFT calculations at the B3LYP level of theory. All compounds have low fluorescence quantum yields, possibly due to an efficient excited‐state intramolecular proton transfer (ESIPT). Laser flash photolysis (LFP) results showed that, only for 2,4‐DHA, a phototautomer could be detected at λ = 400 nm. Their photochemical stability in solution at different wavelengths and conditions was analyzed by UV–Vis and 1H nuclear magnetic resonance spectroscopy (1H‐NMR), together with thin layer chromatography and ultraviolet laser desorption/ionization mass spectrometry (UV‐LDI‐MS). Only 3,5‐DHA showed decomposition when irradiated, probably because phototautomerization is not possible. Thermal stability studies of these compounds in solid state were also conducted.  相似文献   

9.
This work experimentally verifies and proves the two long since postulated matrix-assisted laser desorption/ionization (MALDI) analyte protonation pathways known as the Lucky Survivor and the gas phase protonation model. Experimental differentiation between the predicted mechanisms becomes possible by the use of deuterated matrix esters as MALDI matrices, which are stable under typical sample preparation conditions and generate deuteronated reagent ions, including the deuterated and deuteronated free matrix acid, only upon laser irradiation in the MALDI process. While the generation of deuteronated analyte ions proves the gas phase protonation model, the detection of protonated analytes by application of deuterated matrix compounds without acidic hydrogens proves the survival of analytes precharged from solution in accordance with the predictions from the Lucky Survivor model. The observed ratio of the two analyte ionization processes depends on the applied experimental parameters as well as the nature of analyte and matrix. Increasing laser fluences and lower matrix proton affinities favor gas phase protonation, whereas more quantitative analyte protonation in solution and intramolecular ion stabilization leads to more Lucky Survivors. The presented results allow for a deeper understanding of the fundamental processes causing analyte ionization in MALDI and may alleviate future efforts for increasing the analyte ion yield.  相似文献   

10.
Matrix assisted laser desorption ionization (MALDI) is a technique widely employed in the analysis of proteins and peptides, and nowadays it has also been applied to small molecules. There is little significant information regarding the in‐source dissociation processes on MALDI for natural products. Twenty‐six flavonoids (flavanones, flavones and flavonols) were analyzed by MALDI using different methods (with different matrices) and without matrix to comprehend the in‐source reactions and establish good analysis methods for these compounds. Depending on the class, structure and the laser intensity applied, methoxylated flavonoid aglycones can eliminate methyl radicals (˙CH3) in the source, such as flavonols, but lithium 2,4‐dihydroxybenzoate matrix suppresses the ˙CH3 eliminations and retro‐Diels–Alder cleavages in the source. All of the flavonoid O‐glycosides evaluated herein eliminated the sugar in source, even in the presence of the matrix, and its product radical ions ([M‐H‐sugar]?˙) were observed in the negative mode. The flavone C‐glycosides suffered intense dissociation, which was reduced by the addition of a matrix and the application of low laser intensity, mainly in the negative mode. Depending on the hydroxyl substituents, the [M‐H‐H]?˙ ion was observed with variable relative intensity in the spectra. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
A transfer of energy into the internal modes of the matrix and analyte is expected to occur during matrix-assisted laser desorption/ioniziation (MALDI) processes. Both the physical and thermochemical properties of the MALDI matrix used can influence the ion internal energy and analyte ion fragmentation. Here we report the effect of several MALDI matrices on the relative internal energy of the 2'-deoxyadenylyl-(3',5')-2'-deoxyguanosine (AG) anion. Relative internal energies were probed by low-energy collision-induced dissociation in a Fourier transform ion cyclotron resonance mass spectrometer. Sublimation temperatures of the matrices under study were also determined and found to lie between 409 and 455 K. Analyte ion internal and initial kinetic energies did not correlate with matrix sublimation temperatures. In contrast, a strong correlation between the relative internal energy of the analyte anions and the gas-phase basicity of the matrix anions was found. These results suggest that gas-phase proton transfer reactions play an important role in MALDI analyte ion formation and influence their internal energy and fragmentation behavior. Copyright 2000 John Wiley & Sons, Ltd.  相似文献   

12.
Negative ion production from peptides and proteins was investigated by matrix‐assisted laser desorption/ionization time‐of‐flight (MALDI‐TOF) mass spectrometry. Although most research on peptide and protein identification with ionization by MALDI has involved the detection of positive ions, for some acidic peptides protonated molecules are not easily formed because the side chains of acidic residues are more likely to lose a proton and form a deprotonated species. After investigating more than 30 peptides and proteins in both positive and negative ion modes, [M–H] ions were detected in the negative ion mode for all peptides and proteins although the matrix used was 2,5‐dihydroxybenzoic acid (DHB), which is a good proton donor and favors the positive ion mode production of [M+H]+ ions. Even for highly basic peptides without an acidic site, such as myosin kinase inhibiting peptide and substance P, good negative ion signals were observed. Conversely, gastrin I (1‐14), a peptide without a highly basic site, will form positive ions. In addition, spectra obtained in the negative ion mode are usually cleaner due to absence of alkali metal adducts. This can be useful during precursor ion isolation for MS/MS studies. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
Reduction of analytes in ionization processes often obscures the determination of molecular structure. The reduction of analytes is found to take place in various desorption/ionization methods such as fast atom bombardment (FAB), secondary ion mass spectrometry (SIMS), matrix‐assisted laser desorption/ionization (MALDI) and desorption ionization on porous silicon (DIOS). To examine the extent of the reduction reactions taking place in electrospray droplet impact (EDI) processes, reduction‐sensitive dyes and S‐nitrosylated peptide were analyzed by EDI. No reduction was observed for methylene blue. While methyl red has a lower reduction potential than methylene blue, the reduction product ions were detected. For S‐nitrosylated peptide, protonated molecule ion [M + H]+ and NO‐eliminated molecular ion [M − NO + H]+• were observed but reduction reactions are largely suppressed in EDI compared with that in MALDI. As such, the analytes examined suffer from little reduction reactions in EDI. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
3‐Aminoquinoline/α‐cyano‐4‐hydroxycinnamic acid (3AQ/CHCA) is a liquid matrix (LM), which was reported by Kumar et al. in 1996 for matrix‐assisted laser desorption/ionization (MALDI) mass spectrometry. It is a viscous liquid and has some advantages of durability of ion generation by a self‐healing surface and quantitative performance. In this study, we found a novel aspect of 3AQ/CHCA as a MALDI matrix, which converges hydrophilic material into the center of the droplet of analyte‐3AQ/CHCA mixture on a MALDI sample target well during the process of evaporation of water derived from analyte solvent. This feature made it possible to separate not only the buffer components, but also the peptides and oligosaccharides from one another within 3AQ/CHCA. The MALDI imaging analyses of the analyte‐3AQ/CHCA droplet indicated that the oligosaccharides and the peptides were distributed in the center and in the whole area around the center of 3AQ/CHCA, respectively. This 'on‐target separation' effect was also applicable to glycoprotein digests such as ribonuclease B. These features of 3AQ/CHCA liquid matrix eliminate the requirement for pretreatment, and reduce sample handling losses thus resulting in the improvement of throughput and sensitivity. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Successful application of matrix‐assisted laser desorption/ionization (MALDI) MS started with the introduction of efficient matrices such as cinnamic acid derivatives (i.e. 3,5‐dimethoxy‐4‐hydroxycinnamic acid, SA; α‐cyano‐4‐hydroxycinnamic acid). Since the empirical founding of these matrices, other commercial available cinnamic acids with different nature and location of substituents at benzene ring were attempted. Rational design and synthesis of new cinnamic acids have been recently described too. Because the presence of a rigid double bond in its molecule structure, cinnamic acids can exist as two different geometric isomers, the E‐form and Z‐form. Commercial available cinnamic acids currently used as matrices are the geometric isomers trans or E (E‐cinnamic and trans‐cinnamic acids). As a new rational design of MALDI matrices, Z‐cinnamic acids were synthesized, and their properties as matrices were studied. Their performance was compared with that of the corresponding E‐isomer and classical crystalline matrices (3,5‐dihydroxybenzoic acid; norharmane) in the analysis of neutral/sulfated carbohydrates. Herein, we demonstrate the outstanding performance for Z‐SA. Sulfated oligosaccharides were detected in negative ion mode, and the dissociation of sulfate groups was almost suppressed. Additionally, to better understand the quite different performance of each geometric isomer as matrix, the physical and morphological properties as well as the photochemical stability in solid state were studied. The influence of the E/Z photoisomerization of the matrix during MALDI was evaluated. Finally, molecular modeling (density functional theory study) of the optimized geometry and stereochemistry of E‐cinnamic and Z‐cinnamic acids revealed some factors governing the analyte–matrix interaction. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
The thermochemical acid/base properties of the six dihydroxybenzoic acids (x,y-DHB) as prototypical matrices used in matrix-assisted laser desorption/ionization (MALDI) have been investigated. The ground-state gas-phase basicities (GB) of the six DHB isomers and the gas-phase acidities (deltaG acid) of the corresponding radical cations ([x,y-DHB]*+) have been determined by Fourier-transform ion cyclotron resonance mass spectrometry employing the thermokinetic method. The gas-phase basicities vary from 814 kJ mol-1 for the least basic isomer, 3,5-DHB, to 831 kJ mol-1 for the most basic isomer, 2,4-DHB. The obtained gas-phase acidities of the corresponding radical cations vary from 815 kJ mol-1 for the most acidic species, 3,4-DHB, to 858 kJ mol-1 for the least acidic one, 2,5-DHB. The results indicate that ground-state proton transfer from the matrix radical cations to the analyte may play a role in the ionization process of MALDI, whereas proton transfer from protonated matrix molecules can be excluded.  相似文献   

17.
Unusual ionization behavior was observed with novel antineoplastic curcumin analogues during the positive ion mode of matrix‐assisted laser desorption ionization (MALDI) and dopant‐free atmospheric pressure photoionization (APPI). The tested compounds produced an unusual significant peak designated as [M ? H]+ ion along with the expected [M + H]+ species. In contrast, electrospray ionization, atmospheric pressure chemical ionization and the dopant‐mediated APPI (dopant‐APPI) showed only the expected [M + H]+ peak. The [M ? H]+ ion was detected with all evaluated curcumin analogues including phosphoramidates, secondary amines, amides and mixed amines/amides. Our experiments revealed that photon energy triggers the ionization of the curcumin analogues even in the absence of any ionization enhancer such as matrix, solvent or dopant. The possible mechanisms for the formation of both [M ? H]+ and [M + H]+ ions are discussed in this paper. In particular, three proposed mechanisms for the formation of [M ? H]+ were evaluated. The first mechanism involves the loss of H2 from the protonated [M + H]+ species. The other two mechanisms include hydrogen transfer from the analyte radical cation or hydride abstraction from the neutral analyte molecule. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Matrix‐assisted laser desorption/ionization (MALDI) is a mass spectrometry (MS) ionization technique suitable for a wide variety of sample types including highly complex ones such as natural resinous materials. Coupled with Fourier transform ion cyclotron resonance (FT‐ICR) mass analyser, which provides mass spectra with high resolution and accuracy, the method gives a wealth of information about the composition of the sample. One of the key aspects in MALDI‐MS is the right choice of matrix compound. We have previously demonstrated that 2,5‐dihydroxybenzoic acid is suitable for the positive ion mode analysis of resinous samples. However, 2,5‐dihydroxybenzoic acid was found to be unsuitable for the analysis of these samples in the negative ion mode. The second problem addressed was the limited choice of calibration standards offering a flexible selection of m/z values under m/z 1000. This study presents a modified MALDI‐FT‐ICR‐MS method for the analysis of resinous materials, which incorporates a novel matrix compound, 2‐aminoacridine for the negative ion mode analysis and extends the selection of internal standards with m/z <1000 for both positive (15 different phosphazenium cations) and negative (anions of four fluorine‐rich sulpho‐compounds) ion mode. The novel internal calibration compounds and matrix material were tested for the analysis of various natural resins and real‐life varnish samples taken from cultural heritage objects. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
Fast and easy analysis of phospholipids (PLs) by matrix‐assisted laser desorption/ionization mass spectrometry (MALDI‐MS) has been well demonstrated. However, when using common organic matrices, such as 2,5‐dihydroxybenzoic acid (DHB), the detection of most PL classes in positive‐ion mode is difficult when PLs containing zwitterionic groups, such as phosphatidylcholines (PCs) and sphingomyelins (SMs) are present. To reduce this limitation, 2‐(2‐aminoethyloamino)‐5‐nitropyridine (AAN), a basic compound, was evaluated as an alternative matrix. Negative‐ion spectra showed enhanced detection of phosphatidyl ethanolamines (PEs), phosphatidyl serines (PSs), phosphatidyl glycerols (PGs), and phosphatidyl inositols (PIs) in simple mixtures and in a crude methanolic soybean extract. The relative ionization efficiency (RIE) was highest for PIs and lowest for PGs, PSs, and PEs. Compared to DHB and para‐nitroaniline, AAN resulted in greater sensitivity for the detection of PL classes in the negative mode. Indeed, the S/N ratio was nearly an order of magnitude higher than that reported for similar PI concentrations but with DHB. MALDI spots produced with AAN were homogeneous thus allowing automation and improved reproducibility. Positive‐mode traces could also be acquired with AAN as the matrix, but with lower sensitivity than in the negative mode. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
The gas‐phase chemistry of deprotonated benzyl N‐phenylcarbamates was investigated by electrospray ionization tandem mass spectrometry. Characteristic losses of a substituted phenylcarbinol and a benzaldehyde from the precursor ion were proposed to be derived from an ion‐neutral complex (INC)‐mediated competitive proton and hydride transfer reactions. The intermediacy of the INC consisting of a substituted benzyloxy anion and a phenyl isocyanate was supported by both ortho‐site‐blocking experiments and density functional theory calculations. Within the INC, the benzyloxy anion played the role of either a proton abstractor or a hydride donor toward its neutral counterpart. Relative abundances of the product ions were influenced by the nature of the substituents. Electron‐withdrawing groups at the N‐phenyl ring favored the hydrogen transfer process (including proton and hydride transfer), whereas electron‐donating groups favored direct decomposition to generate the benzyloxy anion (or substituted benzyloxy anion). By contrast, electron‐withdrawing and electron‐donating substitutions at the O‐benzyl ring exhibited opposite effects. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号