首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
An analytical approach to calculate the stress of an arbitrary located penny-shaped crack interacting with inclusions and voids is presented. First, the interaction between a penny-shaped crack and two spherical inclusions is analyzed by considering the three-dimensional problem of an infinite solid, composed of an elastic matrix, a penny-shaped crack and two spherical inclusions, under tension. Based on Eshelby’s equivalent inclusion method, superposition theory of elasticity and an approximation according to the Saint–Venant principle, the interaction between the crack and the inclusions is systematically analyzed. The stress intensity factor for the crack is evaluated to investigate the effect of the existence of inclusions and the crack–inclusions interaction on the crack propagation. To validate the current framework, the present predictions are compared with a noninteracting solution, an interacting solution for one spherical inclusion, and other theoretical approximations. Finally, the proposed analytical approach is extended to study the interaction of a crack with two voids and the interaction of a crack with an inclusion and a void.  相似文献   

2.
This paper reports an experimental study of the motion of dissolving and non-dissolving gas bubbles in a quiescent viscoelastic fluid. The objective of the investigation was to determine the influence of the abrupt transition in bubble velocity, which had been observed at a critical radius of approx. on the rate of mass transfer. Thus, a range of bubble sizes from an equivalent (spherical) radius of 0.2–0.4 cm was employed using CO2 gas, and five different fluids, including one Newtonion glycerine/water solution and four viscoelastic solutions of Separan AP30 in water (0.1, 0.5, 1% by weight) and in a water/glycerine mixture.The experimental data on bubble velocity shows that the discontinuous increase with bubble volume observed previously for air bubbles in viscoelastic fluids, does not occur for dissolving CO2 bubbles—presumably due to the continuous decrease in bubble volume. Instead, a very steep but definitely continuous transition is found. Mass transfer rates are found to be significantly enhanced by viscoelasticity, and comparison with available theoretical results shows that the increase is greater than expected for purely viscous, power-law fluids. We conclude that a fully viscoelastic constitutive model would be necessary for a successful analysis of the dissolution of a gas bubble which is translating through a (high molecular weight) polymer solution.  相似文献   

3.
Interaction of a ring-shaped crack with inhomogeneities such as inclusions is analyzed for the resulting three-dimensional stress field. Considered for the composite solid with a given volume fraction of inclusions are the two cases of (a) spherical voids and (b) spherical inclusions with elastic moduli different from the matrix. A ring-shaped crack is initiated at the equator of one of the voids or inclusions. A three-phase model is used to examine the interaction between the crack and surrounding inhomogeneities. Finite element method is then applied to calculate the stress intensity factor for different configurations. The effects of volume fraction of inhomogeneities, relative size of crack to inclusions, and material constants on crack behavior are discussed.  相似文献   

4.
Mass growth on cylindrical and spherical substrates is a phenomenon which can be related to the biochemical creation of an elastic actin gel shell by polymerization and cross linking of actin filaments either in vivo on bacteria cylindrical surfaces as a means for their motility or in vitro on spherical beads as a means for experimentally studying the previous in vivo case. Such mass growth is strongly effected by the developed stress field. The objective of this paper is to accurately determine this stress field assuming elasticity of the growing mass and symmetrical growth. Based on the special kinematics of mass growing on spherical and cylindrical substrates, inwards or outwards from them, and various isotropic constitutive laws for both small and finite elastic strains, it is possible to obtain the solution for the stress field in closed analytical form for all cases considered. This expands very significantly recent findings [Dafalias, Y.F., Pitouras, Z., 2008. Stress field in actin gel growing on spherical substrate. Biomechanics and Modeling in Mechanobiology, doi:10.1007/s10237-007-0113-y.] for some constitutive laws and outwards growth on spherical substrates only. The effect of biomass compressibility is shown to be of cardinal importance for the developed stress field, questioning the validity of the simplifying assumption of a zero value Poisson ratio usually made in the relevant biomechanics literature for simplicity. Few selected graphs of stress variation along the radial direction illustrate the analytical findings. The obtained closed form analytical expressions for stress can be a standard reference tool in this important area of stress-modulated soft tissue growth.  相似文献   

5.
Following the study of Gologanu et al. (1997) which has extended the well-known approach of Gurson (1975), we propose approximate yield criteria for anisotropic plastic voided metals containing non spherical cavities. The plastic anisotropy of the matrix is described by means of Hill's quadratic criterion. The procedure to establish the closed form expression of approximate macroscopic criteria, in which void shape and plastic anisotropic effects are included, is detailed. The new criteria allow us to recover existing results in the cases of spherical and cylindrical voids in an Hill type plastic matrix. Moreover, they agree with previous criteria for non spherical voids in an isotropic plastic matrix. Finally, for validation purposes, we provide, in the general case of non spherical cavities in the anisotropic matrix, a comparison with the numerical exact two field criteria. To cite this article: V. Monchiet et al., C. R. Mecanique 334 (2006).  相似文献   

6.
7.
A population of several spherical voids is included in a three-dimensional, small scale yielding model. Two distinct void growth mechanisms, put forth by [Int. J. Solids Struct. 39 (2002) 3581] for the case of a two-dimensional model containing cylindrical voids, are well contained in the model developed in this study for spherical voids. A material failure criterion, based on the occurrence of void coalescence in the unit cell model, is established. The critical ligament reduction ratio, which varies with stress triaxiality and initial porosity, is used to determine ligament failure between the crack tip and the nearest void. A comparison of crack initiation toughness of the model containing cylindrical voids with the model containing spherical voids reveals that the material having a sizeable fraction of spherical voids is tougher than the material having cylindrical voids. The proposed material failure determination method is then used to establish the fracture resistance curve (JR curve) of the material. For a ductile material containing a small volume fraction of microscopic voids initially, the void by void growth mechanism prevails, which results in a JR curve having steep slope. On the other hand, for a ductile material containing a large volume fraction of initial voids, the multiple voids interaction mechanism prevails, which results in a flat JR curve. Next, the effect of T-stress on fracture resistance is examined. Finally, nucleation and growth of secondary microvoids and their effects on void coalescence are briefly discussed.  相似文献   

8.
An analysis is made for a gas bubble impulsively started to rise with a constant velocity in a quiescent liquid of infinite extent. Satisfactory results for the total drag force are obtained for spherical air bubbles in water, provided that the method developed here is applied at early times, the flow separation is negligible and the Reynolds number Re is sufficiently large.  相似文献   

9.
In this work, we present a numerical study to investigate the hydrodynamic characteristics of slug flow and the mechanism of slug flow induced CO2 corrosion with and without dispersed small bubbles. The simulations are performed using the coupled model put forward by the authors in previous paper, which can deal with the multiphase flow with the gas–liquid interfaces of different length scales. A quasi slug flow, where two hypotheses are imposed, is built to approximate real slug flow. In the region ahead of the Taylor bubble and the liquid film region, the presence of dispersed small bubbles has less impacts on velocity field, because there are no non-regular intensive disturbance forces or centrifugal forces breaking the balance of the liquid and the dispersed small bubbles. In the liquid slug region, the strong centrifugal forces generated by the recirculation below the Taylor bubble lead to the effect of heterogeneity, which makes the profile of the radial liquid velocity component sharper with higher volume fraction of dispersed small bubbles. The volume fraction has a maximum value in the range of r/R = 0.5–0.6. Meanwhile, it is usually higher than 0.35, which means that larger dispersed bubbles can be formed by coalescences in this region. These calculated results are in good agreement with experimental results. The wall shear stress and the mass transfer coefficient with dispersed small bubbles are higher than those without dispersed small bubbles due to enhanced fluctuations. For short Taylor bubble length, the average mass transfer coefficient is increased when the gas or liquid superficial velocity is increased. However, there may be an inflection point at low mixture superficial velocities. For the slug with dispersed small bubbles, the product scales still cannot be damaged directly despite higher wall shear stress. In fact, the alternate wall shear stress and the pressure fluctuations perpendicular to the pipe wall with high frequency are the main cause for breaking the product scales.  相似文献   

10.
A nonlocal elastic–plastic material model is used to show that the rate of void growth is significantly reduced when the voids are small enough to be comparable with a characteristic material length. For a very small void in the material between much larger voids the competition between an increased growth rate due to the stress concentrations around the larger voids and a reduced growth rate due to the nonlocal effects is studied. The analyses are based on an axisymmetric unit cell model with special boundary conditions, which allow for a relatively simple investigation of a full three dimensional array of spherical voids. It is shown that the high growth rate of very small voids predicted by conventional plasticity theory is not realistic when the effect of a characteristic length, dependent on the dislocation structure, is accounted for.  相似文献   

11.
Diffusion-induced growth of a gas bubble in a viscoelastic fluid   总被引:2,自引:0,他引:2  
The diffusion-induced growth of a spherical gas bubble surrounded by a thin shell of viscoelastic fluid containing a limited amount of dissolved gas is analyzed. This is representative of a situation when a large number of bubbles grows in close proximity in a viscoelastic medium. The upper-convected Maxwell model is employed to describe the rheology of the fluid. Limited quantities of the dissolved gas available in the liquid shell mandates solution of the convection-diffusion equation, as opposed to using similarity solutions or polynomial profiles to describe the mass transport across the interface. Utilizing the properties of a potential field and a Lagrangian transformation, a new approach is introduced to solve the coupled system of integro-differential equations governing the bubble growth. The results indicate that, at the early stages of the growth, bubbles in a viscoelastic fluid grow faster than in a Newtonian fluid. However, eventually they attain the same steady-state configuration.  相似文献   

12.
This paper assesses the ability of the Equivalent Inclusion Method (EIM) with third order truncated Taylor series (Moschovidis and Mura, 1975) to describe the stress distributions of interacting inhomogeneities. The cases considered are two identical spherical voids and glass or rubber inhomogeneities in an infinite elastic matrix. Results are compared with those obtained using spherical dipolar coordinates, which are assumed to be exact, and by a Finite Element Analysis. The EIM gives better results for voids than for inhomogeneities stiffer than the matrix. In the case of rubber inhomogeneities, while the EIM gives accurate values of the hydrostatic pressure inside the rubber, the stress concentrations are inaccurate at very small neighbouring distances for all stiffnesses. A parameter based on the residual stress discontinuity at the interface is proposed to evaluate the quality of the solution given by the EIM. Finally, for inhomogeneities stiffer than the matrix, the method is found to diverge for expansions in Taylor series truncated at the third order.  相似文献   

13.
The gas–liquid flow in a rotor-stator spinning disc reactor, with co-feeding of gas and liquid, is studied for high gas volumetric throughflow rates and high gas/liquid volumetric flow ratios. High speed imaging and spectral analysis of pressure drop signals are employed to analyse the flow. Two mechanisms of bubble formation are observed, one due to gas overpressure leading to large irregular bubbles, and one due to liquid turbulent vortices leading to small, well-defined bubbles. The two mechanisms lead to three distinct gas dispersion regimes, distinguished by their characteristic oscillations in pressure drop. At low rotational Reynolds numbers (Reω < 0.4 · 106), in the gas spillover regime, the gas is dispersed as large bubbles only. Above this critical Reω, small bubbles are sheared off as well, thus forming a heterogeneous dispersion. At sufficiently high Reω, depending on the gas flow rate, the gas is homogeneously dispersed as small bubbles. The maximum gas flow that can be dispersed as small bubbles is linearly proportional to the local energy dissipation rate. The understanding of the bubble formation mechanisms and pressure signature allows prediction and detection of the prevailing hydrodynamic regime in scaled up spinning disc reactors and for different reaction fluids.  相似文献   

14.
We derive expressions for the dilatational properties of suspensions of gas bubbles in incompressible fluids, using a cell model for the suspension. A cell, consisting of a gas bubble centered in a spherical shell of incompressible fluid, is subjected to a purely dilatational boundary motion and the resulting stress at the cell boundary is obtained. The same dilatational boundary motion is prescribed at the boundary of an “equivalent” cell composed of a one-phase, uniformly compressible fluid with unknown dilatational properties. By specifying that the stress at the boundary of the one-phase cell is equal to the stress at the boundary of the two-phase suspension cell, we obtain expressions for the unknown dilatational properties as a function of observable properties of the suspension. The dilatational viscosity of a suspension with a Newtonian continuous phase and the analogous properties for suspensions with non-Newtonian continuous phases are obtained as functions of the boundary motion, volume fraction of gas, and properties of the incompressible continuous phase. Results are presented for continuous phases which are Newtonian fluids, second-order fluids, and Goddard—Miller model fluids.  相似文献   

15.
含球形孔洞双晶铜单向拉伸性能的分子动力学模拟   总被引:1,自引:0,他引:1  
采用分子动力学方法模拟了在单向拉伸载荷作用下含孔洞双晶铜晶体的力学行为,研究了晶粒内部孔洞和晶界孔洞对晶体力学行为的影响。结果表明,孔洞可以显著降低双晶体的弹性模量和屈服应力。对于晶粒内部关于晶界对称的孔洞,随着孔间距的增大,晶体弹性模量和屈服应力都有明显的提高;当保持孔间距不变而改变孔半径时,随着孔体积的不断增大,晶体弹性模量和屈服应力又都呈现出递减趋势。对于晶界上的孔洞,孔洞形状对晶体拉伸性能有显著影响,并且随着孔半径的增大,晶体弹性模量和屈服应力呈现出递减趋势,如果保持孔洞总体积恒定而依次增加孔洞数量,则晶体弹性模量和屈服应力逐渐减小。  相似文献   

16.
Large strain finite element method is employed to investigate the damaging effect of two generations of voids in ductile materials. An axisymmetric cylinder embedding an initially spherical void is chosen as the model cell. Secondary voids will initiate around the initial void when the local stress/strain in the matrix increases to certain critical conditions. This event is numerically simulated through an empty element technique. The interaction between these two generations of voids has been proved to be favourable to the voiding condition, thus accelerating the material damage, characterized by the value of the overall elastic modulus which may undergo drastic drop when nearing final fracture.  相似文献   

17.
In the present study the effects of surface tension on the growth and collapse stages of cavitation bubbles are studied individually for both spherical and nonspherical bubbles. The Gilmore equation is used to simulate the spherical bubble dynamics by considering mass diffusion and heat transfer. For the collapse stage near a rigid boundary, the Navier–Stokes and energy equations are used to simulate the flow domain, and the VOF method is adopted to track the interface between the gas and the liquid phases. Simulations are divided into two cases. In the first case, the collapse stage alone is considered in both spherical and nonspherical situations with different conditions of bubble radius and surface tension. According to the results, surface tension has no significant effects on the flow pattern and collapse rate. In the second case, both the growth and collapse stages of bubbles with different initial radii and surface tensions are considered. In this case surface tension affects the growth stage considerably and, as a result, the jet velocity and collapse time decrease with increasing surface tension coefficient. This effect is more significant for bubbles with smaller radii.  相似文献   

18.
A planar laser-induced fluorescence (PLIF) technique for visualizing gas–liquid mass transfer and wake structure of rising gas bubbles is described. The method uses an aqueous solution of the pH-sensitive dye Naphthofluorescein and CO2 as a tracer gas. It features a high spatial resolution and frame rates of up to 500 Hz, providing the ability to capture cinematographic image sequences. By steering the laser beam with a set of two programmable scanning mirrors, sequences of three-dimensional LIF images can be recorded. The technique is applied to freely rising bubbles with diameters between 0.5 and 5 mm, which perform rectilinear, oscillatory or irregular motions. The resulting PLIF image sequences reveal the evolution of characteristic patterns in the near and far wake of the bubbles and prove the potential of the technique to provide new and detailed insights into the spatio-temporal dynamics of mass transfer of rising gas bubbles. The image sequences further allow the estimation of bubble size and rise velocity. The analysis of bubble rise velocities in the Naphthofluorescein solution indicates that surfactant-contaminated conditions are encountered.  相似文献   

19.
A numerical strategy, based on an adaptive finite element method, is proposed for the direct two‐dimensional simulation of the expansion of small clusters of gas bubbles within a Newtonian liquid matrix. The velocity and pressure fields in the liquid are first defined through the Stokes equations and are subsequently extended to the gas bubbles. The liquid–gas coupling is imposed through the stress exerted on the liquid by gas pressure (ruled by an ideal gas law) and by surface tension. A level set method, combined with a mesh adaptation technique, is used to track liquid–gas interfaces. Many numerical simulations are presented. The single bubble case allows to compare the simulations to an analytical model. Simulations of the expansion of small clusters are then presented showing the interaction and evolution of the gas bubbles to an equilibrium state, involving topological rearrangements induced by Plateau's rule. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
The aim of this paper is to incorporate plastic anisotropy into constitutive equations of porous ductile metals. It is shown that plastic anisotropy of the matrix surrounding the voids in a ductile material could have an influence on both effective stress–strain relation and damage evolution. Two theoretical frameworks are envisageable to study the influence of plastic flow anisotropy: continuum thermodynamics and micromechanics. By going through the Rousselier thermodynamical formulation, one can account for the overall plastic anisotropy, in a very simple manner. However, since this model is based on a weak coupling between plasticity and damage dissipative processes, it does not predict any influence of plastic anisotropy on cavity growth, unless a more suitable choice of the thermodynamical force associated with the damage parameter is made. Micromechanically-based models are then proposed. They consist of extending the famous Gurson model for spherical and cylindrical voids to the case of an orthotropic material. We derive an upper bound of the yield surface of a hollow sphere, or a hollow cylinder, made of a perfectly plastic matrix obeying the Hill criterion. The main findings are related to the so-called ‘scalar effect’ and ‘directional effect’. First, the effect of plastic flow anisotropy on the spherical term of the plastic potential is quantified. This allows a classification of sheet materials with regard to the anisotropy factor h; this is the scalar effect. A second feature of the model is the plasticity-induced damage anisotropy. This results in directionality of fracture properties (‘directional effect’). The latter is mainly due to the principal Hill coefficients whilst the scalar effect is enhanced by ‘shear’ Hill coefficients. Results are compared to some micromechanical calculations using the finite element method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号