首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
田静 《声学学报》2015,40(2):129-133
微穿孔板吸声体是马大猷教授提出的一项特殊的设计技术,自上世纪80年代以来被广泛地应用在音质处理和噪声控制中。微穿孔板吸声体是一种无纤维的宽带吸声材料,它不仅能够应用在传统的建筑声学和噪声控制等领域中,更有意义的是它适用于高温、高速气流、高洁净、需要透明采光等一些极端条件下。当微穿孔板后面有一定的空腔时,它可以在低频的几个频程内具有很高的吸声系数。在喷注噪声控制理论方面,马教授根据小孔喷注噪声与其压力和直径的关系,根据人的听觉生理和心理特性,提出了在气流或者蒸汽出口的颈部处设计合适的小孔结构,可以大大减少气流噪声对人的干扰作用可听声频段内的声辐射,降噪量一般来说可以达到20~60 dBA的降噪量。这就是小孔喷注理论。本文回顾了马大猷教授在他学术生涯第二个春天里结出的这两颗硕果——微穿孔板和小孔喷注,关于微穿孔板在声场和声源噪声控制中的声学特性理论,主要回顾和讨论了微穿孔板结构的研究进展及其在噪声控制中的实际应用,以及小孔喷注噪声的主要能量转移到超声波频段内的物理概念,这一概念对现代喷注噪声控制的发展依然具有重要意义。   相似文献   

2.
New scaling laws are presented for hot turbulent jet mixing noise outside the cone of silence. These account for mean flow field effects on sound radiation via an analytical high frequency approximate solution to Lilley's equation. Numerical calculations for sound radiation from sources in a cylindrical shear flow are used to test the validity of the approximation. The proposed scaling laws yield an excellent collapse of jet noise measurements over a wide range of conditions. The resulting information has been incorporated into a jet mixing noise prediction scheme which, with appropriate modifications to the analytical high frequency approximation, can be applied both inside and outside the cone of silence. The prediction scheme for angles inside the cone of silence will be described in a subsequent paper.  相似文献   

3.
This is a study of the effect of initial condition on sound generated by vortex pairing in a low Mach number, cold air jet (0·15 ⩽ M ⩽ 0·35). Data has been taken, both flow velocity fields and sound pressure far fields, in a quality anechoic facility, with careful documentation of the effect of initial condition on the sound field of jets of two different geometries (i.e., circular and elliptic). Explanations are presented for most of the observed effects by applying Möhring's theory of vortex sound to vortex filament models of coherent structures in the jets. The explanations also draw upon experience with coherent structure dynamics. The sound source of interest here is that associated with the pairing of shear layer vortices. The evolution of these vortices is greatly affected by the initial condition as is their resultant sound field. The elliptic jets with laminar boundary layers show azimuthal directivity, namely, sound pressure levels in the minor axis plane were greater than in the major axis plane. This difference decreases as the nozzle boundary layer undergoes natural transition with increasing jet speed. When the nozzle boundary layer is tripped, making it fully turbulent and removing the shear layer mode of pairing, the elliptic jet sound fields become nearly axisymmetric. What appears to be the most acoustically active phase of vortex pairing has been modeled, and the resulting sound field calculated for the circular jet. Supporting evidence is found in the experimental data for the validity of this model. The model explains the connection between the initial condition and the far field sound of jets. Interestingly, a general result of Möhring's theory is that motions of vortex rings (of any arbitrary shape) can produce only axisymmetric sound fields if the rings remain in a plane. This implies that the observed asymmetric directivity of the laminar elliptic jet sound field must be due to non-planar ring motions of the vortical structures. The primary contribution of this paper is to examine quantitatively the role of vortex pairing in the production of jet noise; the results are used to reemphasize that “pairing noise” cannot be dominant in most practical jet sound fields, contrary to claims by other researchers.  相似文献   

4.
The characteristics of the sound field of shock-containing under-expanded jet flows are studied by measuring the noise from a convergent nozzle operated over an extensive envelope of supercritical jet operating conditions. The measurements were conducted in an anechoic facility. They are complementary to the turbulent mixing noise experiments (described in Part I) for subsonic and fully-expanded (shock-free) supersonic jets. The overall results from shock-containing jets are compared directly with the corresponding results from shock-free jets, and the effects of nozzle pressure ratio and jet exhaust temperature on broadband shock-associated noise are assessed independently. For a supersonic jet, the regimes of jet operating conditions, observer angles, and frequencies over which the sound field is dominated by shock-associated noise are identified. Finally, the spectral results are compared in a preliminary manner with the spectra predicted by an existing theoretical model, and good agreement is obtained in most cases.  相似文献   

5.
We study experimentally how plasma actuators operating on the basis of surface barrier high-frequency discharge affect jet noise characteristics. The results of investigations of air jets (100?C200 m/s) have demonstrated that the studied plasma actuators have control authority over the noise characteristics of these jets. An actuator??s effect on the jet in the applied configuration is related to acoustic discharge excitation and to a large extent is similar to the well-known Vlasov-Ginevsky effect. It has been shown that jet excitation in the case of St ?? 0.5 using the barrier-discharge plasma actuator leads to broadband amplification of jet sound radiation. The jet excitation in the case of St > 2 leads to broadband noise reduction if the action is sufficiently intensive.  相似文献   

6.
In this paper, we investigate the performance of the seventh-order hybrid cell-edge and cell-node dissipative compact scheme (HDCS-E8T7) on curvilinear mesh for noise prediction in subsonic flow. In order to eliminate the errors due to surface conservation law (SCL) is dissatisfied with curvilinear meshes, the symmetrical conservative metric method (SCMM) is adopted to calculate the grid metric derivatives for the HDCS-E8T7. For the simulation of turbulence flow which may have main responsibility for the noise radiation, the new high-order implicit large eddy simulation (HILES) based on the HDCS-E8T7 is employed. Three typical cases, i.e., scattering of acoustic waves by multiple cylinder, sound radiated from a rod-airfoil and subsonic jet noise from nozzle, are chosen to investigate the performance of the new scheme for predicting aeroacoustic problem. The results of scattering of acoustic waves by multiple cylinder indicate that the HDCS-E8T7 satisfying the SCL has high resolution for the aeroacoustic prediction. The potential of the HDCS-E8T7 for aeroacoustic problems on complex geometry is shown by the predicting sound radiated from a rod-airfoil configuration. Moreover, the subsonic jet noise from nozzle has been successfully predicted by the HDCS-E8T7.  相似文献   

7.
The standing wave in the near field of the screech jet exhausted from a nozzle with a hard plate works on the jet flow as the forcing wave by the location of a reflecting plate, and then jet flow is considered to be changed. Moreover, the reflector location from the nozzle changes the sound pressure contours of the near field. Intensity maps of the screech tone which indicate the propagation to the jet axial direction or the radial direction of the jet by the presence of the reflector plate have not been explored. In the present paper, acoustic characteristics in the near field of the screech tone with the reflecting plate are studied using an optical wave microphone, which can measure the sound propagating for both vertical and horizontal directions to the jet axis. As a result, the standing wave in the near field of the screech jet with the reflector has two types: One is the standing wave between the hydrodynamic pressure fluctuation propagating jet downstream and the sound pressure propagating upstream, and the other is the standing wave by the difference between the wavelength of the sound wave and the wavelength at the place close to the jet.  相似文献   

8.
In order to analyze the effect of the background flow on the sound prediction of fine-scale turbulence noise, the sound spectra from static and flow environments are compared. It turns out that, the two methods can obtain similar predictions not only at 90 deg to the jet axis but also at mid- and high frequencies in other directions. The discrepancies of predictions from the two environments show that the effect of the jet flow on the sound propagation is related to low frequencies in the downstream and upstream directions. It is noted that there is an obvious advantage of computational efficiency for calculating in static environment, compared with that in flow environment. A good agreement is also observed to some extent between the predictions in static environment and measurements of subsonic to supersonic. It is believed that the predictions in static environment could be an effective method to study the propagation of the sound in jet flow and to predict the fine scale turbulence noise accurately in a way as well.  相似文献   

9.
The sound field radiating from a jet is strongly dependent upon the turbulence in the jet. To describe the sound sources in a hot jet, a method has been developed, based upon the measurement of infra-red radiation of the jet, and a hybrid processing of the measured signal, which enables the computation of characteristic properties of the turbulence at various points inside the jet (convection speed, integral length scale, life time and intensity of turbulence).From these quantities the acoustic far field can be mapped, as a function of the polar distribution of the spectrum, the turbulence intensity and the total sound pressure field.  相似文献   

10.
Practical holography measurements of composite sources are usually performed using a multireference cross-spectral approach, and the measured sound field must be decomposed into spatially coherent partial fields before holographic projection. The formulations by which the latter approach have been implemented have not taken explicit account of the effect of additive noise on the reference signals and so have strictly been limited to the case in which noise superimposed on the reference signals is negligible. Further, when the sound field is measured by scanning a subarray over a number of patches in sequence, the decomposed partial fields can suffer from corruption in the form of a spatially distributed error resulting from source level variation from scan-to-scan. In the present work, the effects of both noise included in the reference signals, and source level variation during a scan-based measurement, on partial field decomposition are described, and an integrated procedure for simultaneously suppressing the two effects is provided. Also, the relative performance of two partial field decomposition formulations is compared, and a strategy for obtaining the best results is described. The proposed procedure has been verified by using numerical simulations and has been applied to holographic measurements of a subsonic jet.  相似文献   

11.
An analysis is made of the sound generated by the impingement of an air jet on the gas-water interface of a supercavity. The water is in uniform low Mach number motion over the interface. The interface is rippled by the jet, which produces an unsteady surface force on the water that behaves as a dipole or monopole acoustic source, respectively, at high and low frequencies. In a first approximation the very large difference in the gas density and that of water implies that the surface force is similar to that occurring when a jet impinges on a rigid wall. Data from recent measurements by Foley (2009, Ph.D. Dissertation, Department of Mechanical Engineering, Boston University) of the frequency spectrum of the surface force produced by the impact of a turbulent jet on a wall are used to formulate an analytical representation of the spectrum and thence to predict the sound produced in water when the same jet impinges on the cavity interface. The prediction is used to estimate the characteristics of gas jet impingement noise for an experimental supercavitating vehicle in use at the Applied Research Laboratory of Penn State University.  相似文献   

12.
Time-of-flight (TOF) measurements are valuable in the estimation of distances, displacements and velocities of moving objects, phase differences of wave pulses, temperature of the atmosphere, and so on. The effects of sound source on time-of-flight measurements have been investigated in this paper. The sound sources considered are: electric horn, impact noise source, aerodynamic noise from a free jet, and the Hartmann whistle. The focus of the present study is to highlight the advantage of using Hartmann whistle for TOF measurements as this device is simple and attractive, without any moving parts. Time-of-flight of sound waves is calculated by cross-correlating the signals received by two microphones. Further, the effect of signal filtering on TOF measurements is demonstrated. The results indicate that the sound source has considerable effect on TOF measurements, and the accuracy can be significantly enhanced by appropriate signal conditioning. Hartmann whistle proves to be a good candidate as an acoustic source for TOF measurement.  相似文献   

13.
A system has been developed for real-time sound source location on full-size jet engines. It consists of an array of microphones connected to a small digital computer, via a sequence of preamplifiers, analog filters and analog to digital converters and multiplexer. Microphone signals can be processed on-line to give displays of time varying source distributions or statistical averages with respect to position and frequency, by using a colour television as well as a display screen and printer/plotter. The whole system can be transported in a small estate car and can be used on both model scale and full size engine test rigs.A theoretical analysis of system performance is in terms of a line source of generally correlated omni-directional sound radiators, which shares the measurable far-field properties of a jet engine noise source. The general properties of the system are described, including its use to correlate spatially separated sound sources, application in the presence of ground reflections and use in a moving airstream. The statistical properties of apparent source distributions are also discussed.A series of experiments on a Rolls-Royce/SNECMA Olympus engine is described, in order to illustrate application of the system.  相似文献   

14.
The sound intensity of jet noise from aircraft in flight is derived in a co-ordinate system fixed to the jet engine. For this reason a convected form of the Lighthill equation is solved, with special care taken of jet temperature effects. Under certain assumptions and approximations, the in-flight and static sound intensities are related in a simple manner. Thus the directivity of jet noise in flight can be predicted. The theoretical result is checked with measurements. The agreement is remarkably good.  相似文献   

15.
An analysis is made of the production of sound by a hydrofoil with a Coanda wall jet circulation control (CC-) device. Three principal sources are identified in the vicinity of the trailing edge of the hydrofoil. The radiation at very low frequencies is dominated by “curvature noise” generated by the interaction of boundary layer turbulence with the rounded trailing edge of the CC-hydrofoil; this is similar in character and magnitude to the low-frequency component of the conventional trailing edge noise produced by a hydrofoil of the same chord, but with a sharp trailing edge. Higher frequency sound is produced principally at the Coanda jet slot. “Passive slot noise” is caused by the “scattering” by the slot lip of nearfield pressure fluctuations in the turbulent boundary layer of the exterior mean flow past the slot. This is of comparable intensity to high frequency, sharp-edged trailing edge noise. However, the acoustic spectrum is greatly extended to much higher frequencies if the Coanda jet is turbulent; the sound produced by the interaction of this turbulence with the lip tends to dominate the spectrum at frequencies f (Hz) greater than about Uj/h, where h is the slot width and Ujthe Coanda jet speed. Sample numerical results are presented for a typical underwater application that indicate that at this and higher frequencies the slot noise can be 20 dB or more greater than conventional trailing edge noise, although the differences become smaller as the thickness of the slot lip increases.  相似文献   

16.
An analytical investigation is made of the low frequency noise produced by gas jet impingement on the gas-water interface of a ventilated supercavity. Enclosure within a supercavity enables an underwater vehicle to attain high-speed forward motion. Whereas high frequency components of the cavity self-noise can interfere with the vehicle guidance system, low frequency sound tends to radiate in the water to large distances from the cavity. A canonical mathematical problem is examined that extends a previous study by Foley et al. (Journal of Sound and Vibration329 (2010) 415-424.) of sound generation by a specially modified, model scale supercavitating vehicle involving gas jet impingement at normal incidence to the interface. Our analysis determines the influence on low frequency sound production of cavity aspect ratio and the manner in which the efficiency of sound production increases with decreasing distance of the jet impact region from the circular ‘cavitator’ at the vehicle nose, where the supercavity is formed.  相似文献   

17.
This study was intended primarily to reveal more information about the noise producing mechanisms of supersonic jets. Two identical, small, cold air, supersonic, overexpanded jets were tested at selected angles, varying from parallel to 90 degrees intersecting, and at various distances apart. Schlieren photographs of the jet structure and far field sound data were obtained. Close spacing of the parallel jets caused acoustic attenuation, which reached a maximum at one diameter centerline spacing, where the sound of two jets nearly equals that of a single jet. In every case the intersecting jets merged into a single supersonic jet.The overall sound power level of intersecting jets is generally higher than that of two independent jets, because of the turbulent mixing of the two jet flows. A maximum level is reached when the jets intersect at a point near the middle of the flow region containing repetitive shocks. For the parallel jets and intersecting jets at large separation, the sound levels are lower in the plane containing the jet centerlines. For intersecting jets at small separation, however, this shielding effect is reversed.  相似文献   

18.
Flue instruments such as the recorder flute and the transverse flute have different mouth geometries and acoustical response. The effect of the mouth geometry is studied by considering the aeroacoustical response of a simple whistle. The labium of a transverse flute has a large edge angle (60 degrees) compared to that of a recorder flute (15 degrees). Furthermore, the ratio W/h of the mouth width W to the jet thickness h can be varied in the transverse flute (lips of the musician) while it is fixed to a value W/h approximately 4 in a recorder flute. A systematic experimental study of the steady oscillation behavior has been carried out. Results of acoustical pressure measurements and flow visualization are presented. The sharp edge of the recorder provides a sound source which is rich in harmonics at the cost of stability. The larger angle of the labium of the flute seems to be motivated by a better stability of the oscillations for thick jets but could also be motivated by a reduction of broadband turbulence noise. We propose two simplified sound source models which could be used for sound synthesis: a jet-drive model for W/h>2 and a discrete-vortex model for W/h<2.  相似文献   

19.
Spectral information on the sound radiated from turbulent shock-free jets is now available over a wide range of Strouhal numbers, for jet densities ranging from 0·3 to 2 times the ambient density and jet velocities ranging from 0·3 to 2 times the ambient sound speed. In order to account for some of the trends observed, a jet noise model is developed which takes account of acoustic-mean flow interaction. The model is based on a shear flow analogy, for which the governing equation is Lilley's equation, and numerical solutions are obtained for sources representative of turbulent mixing noise. Analytic solutions developed for low- and high-frequency excitation show good agreement with the numerical results. Finally, the model predictions are compared with measurements on hot and isothermal jets.  相似文献   

20.
The behavior of a sound pulse from a simulated source in a jet is investigated both experimentally and numerically. Both approaches show that in the low and medium frequencies the far field acoustic power exhibits a marked amplification as the flow velocity increases. Experimentally this changes to an attenuation at the higher frequencies which cannot be computed by the numerical model. This amplification is traced to shear noise terms which trigger the instability waves that are inherent within the flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号