首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Three metal square planar complexes of the type [M(CH3)2(NH3)2] (M = Ni, Pd, Pt), with a systematic variation in the metals, are chosen to investigating their SN2-type oxidative addition reactions with methyl iodide by using the B3LYP levels of theory. The oxidative addition was found to take place via a transition state with a nearly linear arrangement of the I-CH3-M moiety. Solvation effects in these oxidative addition reactions were also investigated. Considering the nature of the metal centre and solvation effects, the following conclusions emerge: (i) addition of MeI is exothermic for all three metals, and Pt is predicted to react with a much lower barrier than either Pd or Ni. The results describe that the MeI addition would be expected to be more favourable with the complex bearing the third-row metal (platinum) as compared to the other triad metals, nickel or palladium, in which case a more strongly bound MeI adduct is formed with a lower activation barriers and the reaction being more exothermic; (ii) the reaction is very difficult to occur in low polar solvents, such as benzene, due to the high barrier which is induced by dissociation of iodide anion from methyl group, but the reaction easily occurs in polar solvents, such as acetonitrile; this is attributed to the ability of polar solvents to solvate and therefore stabilize the related polar intermediate ion pair. Ethane reductive elimination from the M(VI) complexes fac-[M(CH3)3(NH3)2I] were also studied, indicating that the Ni(IV) and Pd(IV) complexes are very prone to undergo the reductive elimination while the Pt(IV) analogous is less reactive towards the reductive elimination. The results indicate that in contrast to the Me-Me reductive elimination, the SN2 oxidative addition reaction of MeI to M(II) is much less sensitive to the nature of the metal centre, suggesting that the nucleophilicity of M(II) in [M(CH3)2(NH3)2] does not change significantly as one moves from M = Ni to Pt.  相似文献   

2.
By replacing Mn in YCa3(MnO)3(BO3)4 with trivalent Al and Ga, two new borates with the compositions of YCa3(MO)3(BO3)4 (M=Al, Ga) were prepared by solid-state reaction. Structure refinements from X-ray powder diffraction data revealed that both of them are isostructural to gaudefroyite with a hexagonal space group P63/m. Cell parameters of a=10.38775(13)Å, c=5.69198(10)Å for the Al-containing compound and a=10.5167(3)Å, c=5.8146(2)Å for the Ga analog were obtained from the refinements. The structure is constituted of AlO6 or GaO6 octahedral chains interconnected by BO3 groups in the ab plane to form a Kagomé-type lattice, leaving trigonal and apatite-like tunnels. It is found that most rare-earth and Cr, Mn ions can be substituted into the Y3+ and M3+ sites, respectively, and the preference of rare-earth ions to locate in the trigonal tunnel is correlated to the sizes of the M3+ ions.  相似文献   

3.
The hydrogenation behavior of MgPd3 has been studied by in situ X-ray powder diffraction and by neutron powder diffraction. At room temperature and p ≈500 kPa hydrogen pressure its structure is capable of incorporating up to one hydrogen atom per formula unit (α-MgPd3H≈1), thereby retaining a tetragonal ZrAl3-type metal atom arrangement. Upon heating to 750 K in a hydrogen atmosphere of 610 kPa it transforms into a cubic modification with AuCu3-type metal atom arrangement (β-MgPd3H≈0.7). Neutron diffraction on the deuteride reveals an anion deficient anti-perovskite-type structure (β-MgPd3D0.67, a=398.200(7) pm) in which octahedral sites surrounded exclusively by palladium atoms are occupied by deuterium. Complete removal of hydrogen (480 K, 1 Pa) stabilizes a new binary modification (β-MgPd3, a=391.78(2) pm) crystallizing with a primitive cubic AuCu3-type structure. Mechanical treatment (grinding) transforms both α and β modifications of MgPd3 into a cubic face-centered solid solution Mg0.25Pd0.75 showing a random distribution of magnesium and palladium atoms.  相似文献   

4.
Bis(cycloocta-1,5-diene)platinum reacts with 2,3,4,5-tetraphenylfulvene to afford the complex [Pt(η2-CH2C5Ph4)(cod)] (cod  C8H12) in which the metal atom is coordinated to the exo-cyclic double bond of the fulvene. Related compounds [Pt(η2-CH2C5Ph4L2] (L  PPh3, PMePh2, PMe2Ph, AsPh3 or CNBut have also been prepared and characterised. Reaction of the complexes [Pt(C2H4)2(L)] (L  P(cyclo-C6H11)3, PPh3 or AsPh3) with 2,3,4,5-tetraphenylfulvene yields the compounds [Pt(C2H4)(η2-CH2C5PH4)(L)]. NMR data for the new species are reported and discussed. 6,6-Diphenylfulvene reacts with [Pt(cod)2] and PPh3 (12 mol ratio) to give the complex [Pt(η2-C5H4CPh2)-(PPh3)2] in which the metal atom is bonded to carbon atoms C(2) and C(3) of the fulvene ring. This was established by an X-ray diffraction study. Crystals are monoclinic, space group P21/n, with Z  4 in a unit cell of dimensions a  13.761(4), b  21.653(13), c  17.395(6) Å, β,  104.46(2)°. The structure has been solved and refined to R  0.064 (R′  0.064) for 3139 independent diffracted intensifies measured at room temperature. The platinum atom is in a trigonal environment formed by the two ligated phosphorus atoms and the CC bond of the fulvene which is elongated to 1.52(3) Å. The c5 fulvene ring is planar, and makes an angle of 108° with the coordination plane around the platinum. In this plane the metal atom is slightly asymmetrically bonded with PtC 2.15(2) and 2.24(2) Å, and PtP 2.280(6) and 2.301(6) Å.  相似文献   

5.
The partial substitution of Co by Rh in the [Pb0⋅7Co0.4Sr1.9O3]RS[CoO2]1.8 family has been investigated. By transmission electron microscopy and X-ray powder diffraction, it is shown that the substitution of Rh for Co takes place at the two cobalt sites of the structure but for the low enough Rh contents, this substitution is made preferentially at the level of the CdI2-like layer. Thus, a generic formula [Pb0.7(Co0.4−zRhz)Sr1.9O3]RS[Co1−yRhyO2]b1/b2 (0?y?0.5 and 0?z?0.3) can be proposed for this new family of misfit phase. As observed for the pure misfit cobaltite, the thermoelectric power is also very large, close to +140 μV/K at room temperature. The Rh cation can adopt a mixed valency Rh3+/Rh4+ (4d6/4d5) with low spin states t2g6/t2g5 equivalent to the ones of low spin Co3+/Co4+ (3d6/3d5). The large thermopower observed in the Rh substituted compounds is therefore a direct proof that the coexistence of low spin states t2g6/t2g5 contributes to the thermoelectric power enhancement in these oxides.  相似文献   

6.
A new layered indium phosphate [Co(en)3][In3(H2PO4)6(HPO4)3]·H2O (1) has been synthesized solvothermally by using a racemic mix of chiral metal complex Co(en)3Cl3 as a template. Its structure is determined by single-crystal X-ray diffraction analysis and further characterized by X-ray powder diffraction, ICP, NMR and TG analyses. The inorganic layer is built up by alternation of In-centred octahedra (InO6) and P-centered tetrahedra (PO3(OH), PO2(OH)2, PO2(=O)(OH) and PO(=O)(OH)2) forming a 4.12-net. The metal complex cations locate in the interlayer region and interact with the host network through H-bonds. It is the first indium phosphate compound templated by a transition-metal complex and is isostructural with GaPO-CJ14. Crystal data: 1, monoclinic, space group P21/m (No. 11), a=9.1700(18) Å, b=22.6923(5) Å, c=9.9116(2) Å, β=107.87(3)°, Z=4, R1[I>2σ(I)]=0.0287 and wR2(all data)=0.0939.  相似文献   

7.
Hexanuclear oxo titanium(IV) siloxo carboxylate complexes with the general formula [Ti6O6(OSi(CH3)3)6(OOCR)6] (R = But (1), CH2But (2), C(CH3)2Et (3)) were synthesized in quantitative yield, by the reaction of Ti(OSiMe3)4 with the appropriate organic acid. Crystal structure determination revealed that molecules of 13 are composed of [Ti6-(μ3-O)6] cores stabilized by six synsyn carboxylato bridges and six terminal siloxide ligands. Each metal atom is surrounded by six oxo atoms, capping the triangular faces of the distorted octahedron. Spectral characterization (IR, NMR) of 13 revealed a significant non-equivalence of the carboxylate group interactions, resulting from the asymmetry of the Ti-μ-OOC bonds of the synsyn bridges. The thermal stability of the studied compounds was determined from TGA/DTA analysis.  相似文献   

8.
A new layered gallium phosphate [Co(en)3][Ga3(H2PO4)6(HPO4)3], denoted as GaPO-CJ14, has been synthesized solvothermally by using a racemic mix of chiral metal complex Co(en)3Cl3 as a template. Its structure was determined by single-crystal X-ray diffraction analysis and further characterized by X-ray powder diffraction, ICP, and TG analyses. The compound crystallizes in the monoclinic space group P21/m (No. 11) with a=9.2103(3), b=22.0936(8), c=9.5458(4) Å, β=108.278(2)°, Z=2, R1=0.0497 and wR2=0.1122 for all data. The inorganic layer is built up by alternation of Ga-centered octahedra (GaO6) and P-centered tetrahedra (PO3(OH), PO2(OH)2 , PO2(O)(OH) and PO(O)(OH)2) forming a 4.12-net. The sheet structure is featured by a series of structural units composed of two centrosymmetrically related [3.3.3] propellane-like chiral motifs. The metal complex cations locate in the interlayer region and interact with the host network through H-bonds.  相似文献   

9.
Eight novel calix[6]arene-based biomimetic ligands for transition metal ions have been synthesized. They display a non-symmetrical N3, N4 or N3ArO binding core that mimics enzyme active sites presenting histidine and tyrosine residues. The key step for their synthesis is the mono-alkylation at the small rim of the C3v symmetrical trimethyl ether derivative of tBu-calix[6]arene with N-Boc-2-chloroethylamine to yield a novel calix[6]arene synthon. Its combined O-alkylation with a chloromethyl aromatic amine and N-deprotection or alkylation or reductive alkylation with a salicylaldehyde derivative yielded the calix[6]arene-based ligands with mixed N/O donors.  相似文献   

10.
A new quaternary layered carbide, Zr2[Al3.56Si0.44]C5, has been synthesized and characterized by X-ray powder diffraction, transmission electron microscopy and thermopower and electrical conductivity measurements. The crystal structure was successfully determined using direct methods, and further refined by the Rietveld method. The crystal is trigonal (space group R3m, Z=3) with lattice dimensions of a=0.331059(5), c=4.09450(5) nm and V=0.38864(1) nm3. The final reliability indices calculated from the Rietveld refinement were Rwp=6.24%, Rp=4.21% and RB=0.82%. The crystal structure is composed of electroconductive NaCl-type ZrC slabs separated by Al4C3-type [Al3.56Si0.44]C3 layers. This material had thermoelectric properties superior to those of the ternary layered carbides Zr2Al3C4 and Zr3Al3C5, with the power factor reaching 7.6×10−5W m−1 K−2.  相似文献   

11.
The reaction of the anion [(tBuP)3As] (1) with Me2SiCl2 results in nucleophilic substitution of the Cl anions, giving the di- and mono-substituted products [Me2Si{As(PtBu)3}2] (3a) and [Me2Si(Cl){As(PtBu)3}] (3b). Analogous reactions of the pre-isolated [(CyP)4As] anion (2) (Cy = cyclohexyl) with Me2SiCl2 produced mixtures of products, from which no pure materials could be isolated. However, reaction of 2 [generated in situ from CyPHLi and As(NMe2)3] gives the heterocycle [(CyP)3SiMe2] (4). The X-ray structures of 3a and 4 are reported.  相似文献   

12.
The lanthanum iron carbide La3.67[Fe(C2)3] was prepared from the elements by argon arc-melting followed by annealing. The crystal structure of the ternary phase was reported previously (space group P63/m with a=878.7(2) pm, and c=535.1(1) pm) [A.M. Witte, W. Jeitschko, Z. Naturforsch. 51b (1996) 249-255]. In the present work the compound was reinvestigated by X-ray powder and single crystal diffraction, and was further characterized by metallographic methods and chemical analyses. Our diffraction data clearly reveal a superstructure with weak superstructure reflections in the space group P63/m with a=879.26(8) pm and c=1604.59(15) pm, thus tripling the previously reported subcell. The crystal structure (refinement to R1=0.044 and wR2=0.075 for 1387 unique reflections and 60 variables) contains Fe(C2)3 trigonal planar groups with the C2 ligands bonded end-on to the Fe atoms. The C-C distance is typical for a double bond. La atoms as the least electronegative component surround the complex anions and form a framework of face-sharing tricapped trigonal prisms. The resulting hexagonal channels at 0, 0, z of the partial structure with chemical composition La3FeC6 are occupied by four additional La atoms per unit cell. These La atoms are fully ordered within a linear chain and display a Peierls-like distortion pattern. However, no long-range order in the ab plane has been observed due to the random orientation of the chains. Because of the two different orientations which are possible for each chain the situation is similar to an Ising model on a triangular lattice.  相似文献   

13.
The local environment of transition metal (Mt) and lead has been studied by EXAFS for some fluoride glasses in the system PbF2MIItF2MIIItF3 (MIIt = Mn2+, Zn2+; MIIIt = Fe3+, Ga3+). Theoretical phase shifts and backscattering amplitude are used after testing with crystallized fluorides of various structures. Transition metals are sixfold coordinated and MtF distances are very close to those known in crystallized compounds. Lead has eight to nine fluorine neighbors forming a very distorted polyhedra. Radial distributions, partially corrected for phase shifts, show a very weak second peak but the second neighbors nature and the distances cannot be determined without ambiguity.  相似文献   

14.
The reaction of Al, Ga, or In metals and H5IO6 in aqueous media at 180 °C leads to the formation of Al(IO3)3, Ga(IO3)3, or In(IO3)3, respectively. Single-crystal X-ray diffraction experiments have shown In(IO3)3 contains the Te4O9-type structure, while both Al(IO3)3 and Ga(IO3)3 are known to exhibit the polar Fe(IO3)3-type structure. Crystallographic data for In(IO3)3, trigonal, space group , a=9.7482(4) Å, c=14.1374(6) Å, V=1163.45(8) Z=6, R(F)=1.38% for 41 parameters with 644 reflections with I>2σ(I). All three iodate structures contain group 13 metal cations in a distorted octahedral coordination environment. M(IO3)3 (M=Al, Ga) contain a three-dimensional network formed by the bridging of Al3+ or Ga3+ cations by iodate anions. With In(IO3)3, iodate anions bridge In3+ cations in two-dimensional layers. Both materials contain distorted octahedral holes in their structures formed by terminal oxygen atoms from the iodate anions. The Raman spectra have been collected for these metal iodates; In(IO3)3 was found to display a distinctively different vibrational profile than Al(IO3)3 or Ga(IO3)3. Hence, the Raman profile can be used as a rapid diagnostic tool to discern between the different structural motifs.  相似文献   

15.
A [Cr(H2O)6]Cl3 aqueous solution, 0.25 M at T=20°C, is investigated by X-ray diffraction. The calculated radial distribution function shows, in spite of the low Cr3+ concentration, a well resolved peak centred around 1.90 A, a distance coincident with the Cr3+-H2O distance found in crystalline [Cr(H2O)6]Cl3. It can reasonably be stated that the [Cr(H2O)6]3+ ions pass relatively undisturbed into solutions where they constitute quite stable units.  相似文献   

16.
Reaction of phenylimido tungsten tetrachloride with MeOH and t-butylamine gave the dimeric complexes [W(NPh)(μ-OMe)(OMe)3]2 and [W(NPh)(μ-OMe)(OMe)2Cl]2. With ethanol [W(NPh)(μ-OEt)(OEt)2Cl]2 was formed whereas isopropyl and neopentyl alcohols gave the monomeric complexes [W(NPh)(OR)4(NH2CMe3)](R = CHMe2, CH2CMe3); t-butanol gave [W(NPh)(OCMe3)3Cl(NH2CMe3)] which could not be converted to [W(NPh) (OCMe3)4]. Further reaction of [W(NPh)(μ-OMe)(OMe)3]2 with o-HOC6H4CH = NC6H3Me2(salim-H) gave the salicylaldimine complex [W(NPh)(OMC)3(salim)]. The products were characterised by analytical data, IR, 1H NMR, 13C NMR and mass spectroscopy. The crystal and molecular structures of the title complexes have been determined from single crystal X-ray diffractometer data. Crystals of [W(NPh)(μ-OMe)(OMe)3]2are triclinic with a = 8.473(7), b = 10.776(5), c = 7.683(Å, α = 102.26(3), β = 102.68(4), γ = 71.13(6)°, space group P1 Crystals of 3) [W(NPh)(OCMe3)3Cl(NH2CMe3) are monoclinic with a = 9.341(2), b = 29.608(7), c = 10.257(2) Å, β = 106.28(2)°, space group, P21/c. Both structures were solved by Patterson and Fourier methods and refined to R = 0.075 for the 1022 observed data of [W(NPh) (μ-OMe)(OMe)3]2 and to R = 0.074. For the 2033 observed data of [W(NPh)(OCMe3)3Cl(NH2CMe3). The former molecule is shown to be a dimer, the two halves of the molecule being related by a centre of symmetry. Both W atoms adopt a distorted octahedral coordination geometry and they are linked by two methoxy bridges. Trans to one of the bridging donors is the phenyl imido group with a WN bond length of 1.61(4) Å; the remaining coordination sites are filled with methoxy groups. The structure of W(NPh)(OCMe3)3 Cl(NH2CMe3) is monomeric with the phenylimido group trans to the NH2CMe3 ligand in a distorted octahedral coordination geometry. Remaining sites are filled with the chloride and 3 OCMe3 ligands. The WN (imido) bond length is 1.71(2) Å, whilst WN(amine) is 2.40(2) Å  相似文献   

17.
Two new compounds, La3Ru8B6 and Y3Os8B6, were synthesized by arc melting the elements. Their structural characterization was carried out at room temperature on as-cast samples by using X-ray diffractometry. According to X-ray single-crystal diffraction results these borides crystallize in Fmmm space group (no. 69), Z=4, a=5.5607(1) Å, b=9.8035(3) Å, c=17.5524(4) Å, ρ=8.956 Mg/m3, μ=25.23 mm−1 for La3Ru8B6 and a=5.4792(2) Å, b=9.5139(4) Å, c=17.6972(8) Å, ρ=13.343 Mg/m3, μ=128.23 mm−1 for Y3Os8B6. The crystal structure of La3Ru8B6 was confirmed from Rietveld refinement of X-ray powder diffraction data. Both La3Ru8B6 and Y3Os8B6 compounds are isotypic with the Ca3Rh8B6 compound and their structures are built up from CeCo3B2-type and CeAl2Ga2-type structural fragments taken in ratio 2:1. They are the members of structural series R(A)nM3n−1B2n with n=3 (R is the rare earth metal, A the alkaline earth metal, and M the transition metal). Structural and atomic parameters were also obtained for La0.94Ru3B2 compound from Rietveld refinement (CeCo3B2-type structure, P6/mmm space group (no. 191), a=5.5835(9) Å, c=3.0278(6) Å).  相似文献   

18.
Two new main group metal sulphides, [C10N4H26]0.5[InS2] (1) and [C10N4H26]0.5[GaS2] (2) have been prepared solvothermally in the presence of 1,4-bis(3-aminopropyl)piperazine and their crystal structures determined by single-crystal X-ray diffraction. Both compounds are isostructural and crystallise in the monoclinic space group P21/n (Z=4), with a=6.5628(5), b=11.2008(9), c=12.6611(9) Å and β=94.410(4)° (wR=0.035) for compound (1) and a=6.1094(5), b=11.2469(9), c=12.7064(10) Å and β=94.313(4)° (wR=0.021) for compound (2). The structure of [C10N4H26]0.5[MS2] (M=In,Ga) consists of one-dimensional [MS2] chains which run parallel to the crystallographic a axis and are separated by diprotonated amine molecules. These materials represent the first example of solvothermally prepared one-dimensional gallium and indium sulphides.  相似文献   

19.
The stability of high-temperature fuel cell electrodes to their ambient environment is important for the long-term reliability of fuel cells. In this report the behavior of oxide electrode materials as a function of oxygen activity and temperature is considered. Models for the oxidation-reduction behavior of both p- and n-type oxides are presented. These models take into account the absorption and evolution of oxygen which take place as oxygen activity is varied. The resulting instability in electrical conductivity is explained as a consequence of changes in carrier concentration due to variability in ionic defect concentration. The proposed models are applied to acceptor-doped LaCrO3 and donor-doped SrTiO3. It is shown that the models explain the experimental data well and as a consequence diagrams can be made which show the regions of oxygen activity and temperature for which stability of electrical conductivity and defect structure might be expected.  相似文献   

20.
The molecular and crystal structure of tris(bistrimethylsilylamin)thallium was determined by means of single-crystal X-ray spectroscopy: in the space group P31c with a = 16.447(7), c = 8.456(7) Å; and Dc = 1.149 g cm?3 two molecules are located in the unit cell. The compound is isomorphous to the analogues Fe[N(SiMe3)2]3 or Al[N(SiMe3)2]3, respectively, which show a propellar-twist of the Si2N-groups versus the plane of the metal atom and the three nitrogen-atoms: Tl(N)3/Si2N 49.1°; SiNSi 122.6°; NSiC 111.8°; CSiC 107.1°; TlN 2.089 Å;; SiN 1.738 Å;; SiC 1.889 Å;.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号