首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A UPLC/MS/MS method with simple protein precipitation has been validated for the fast simultaneous analysis of agomelatine, asenapine, amisulpride, iloperidone, zotepine, melperone, ziprasidone, vilazodone, aripiprazole and its metabolite dehydro‐aripiprazole in human serum. Alprenolol was applied as an internal standard. A BEH C18 (2.1 × 50 mm, 1.7 µm) column provided chromatographic separation of analytes using a binary mobile phase gradient (A, 2 mmol/L ammonium acetate, 0.1% formic acid in 5% acetonitrile, v/v/v; B, 2 mmol/L ammonium acetate, 0.1% formic acid in 95% acetonitrile, v/v/v). Mass spectrometric detection was performed in the positive electrospray ionization mode and ion suppression owing to matrix effects was evaluated. The validation criteria were determined: linearity, precision, accuracy, recovery, limit of detection, limit of quantification, reproducibility and matrix effect. The concentration range was as follows: 0.25–1000 ng/mL for agomelatine; 0.25–100 ng/mL for asenapine and iloperidone; 2.5–1000 ng/mL for amisulpride, aripiprazole, vilazodone and zotepine; 2.3–924.6 ng/mL for dehydroaripiprazole; 2.2–878.4 ng/mL for melperone; and 2.2–883.5 ng/mL for ziprasidone. Limits of quantitation below a therapeutic reference range were achieved for all analytes. Intra‐run precision of 0.4–5.5 %, inter‐run precision of 0.6–8.2% and overall recovery of 87.9–114.1% were obtained. The validated method was successfully implemented into routine practice for therapeutic drug monitoring in our hospital. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
A sensitive and selective LC‐MS/MS method for the determination of agomelatine in human plasma was developed and validated. After simple liquid–liquid extraction, the analytes were separated on a Zorbax SB‐C18 column (150 × 2.1 mm i.d., 5 µm) with an isocratic mobile phase consisting of 5 mm ammonium acetate solution (containing 0.1% formic acid) and methanol (30:70, v/v) at a flow‐rate of 0.3 mL/min. The MS acquisition was performed in multiple reaction monitoring mode with a positive electrospray ionization source. The mass transitions monitored were m/z 244.1 → 185.3 and m/z 285.2 → 193.2 for agomelatine and internal standard, respectively. The methods were validated for selectivity, carry‐over, matrix effects, calibration curves, accuracy and precision, extraction recoveries, dilution integrity and stability. The validated method was successfully applied to a pharmacokinetic study of agomelatine in Chinese volunteers following a single oral dose of 25 mg agomelatine tablet. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
A selective, sensitive and rapid liquid chromatographic method with electrospray ionization tandem mass spectrometric detection has been developed and validated for simultaneous quantification of sacubitril and valsartan in rat plasma using telmisartan as internal standard (IS). The analytes were extracted by deprotenization of 50 μL of plasma sample using 200 μL of acetonitrile. In a short chromatographic run of 1.50 min run time, separation was achieved on a Hypersil Gold C18 column using a mobile phase composed of 0.1% formic acid in Milli‐Q water–0.1% formic acid in acetonitrile in gradient elution mode. The quantification of target compounds was performed in a positive electrospray ionization mode and multiple reaction monitoring. Response was a linear function of concentration in the ranges of 0.5–20,000 ng/mL for both analytes, with r2 > 0.9997. The intra‐ and inter‐day precision and accuracy results were <15% and acceptable as per US Food and Drug Administration guidelines. Stability of compounds were established in a battery of stability studies, i.e. bench‐top, autosampler and long‐term storage stability as well as freeze–thaw cycles. The validated method can be used as a routine method to support pharmacokinetic studies. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
A fast and accurate liquid chromatography/tandem mass spectrometric (LC‐MS/MS) assay was first developed and validated for the determination of deferiprone in human plasma. The analytes were extracted with acetonitrile from only 50 μL aliquots of human plasma to achieve the protein precipitation. After extraction, chromatographic separation of analytes in human plasma was performed using a Synergi Fusion‐RP 80A column at 30 °C. The mobile phase consisted of methanol and 0.2% formic acid containing 0.2 mM EDTA (60:40, v/v). The flow rate of the mobile phase was 0.8 mL/min. The total run time for each sample analysis was 4 min. Detection was performed using electrospray ionization in positive ion multiple reaction monitoring mode by monitoring the precursor‐to‐parent ion transitions m/z 140.1 → 53.1 for deferiprone and m/z 143.1 → 98.1 for internal standard. A linear range was established from 0.1 to 20 µg/mL. The limit of detection was determined as 0.05 µg/mL. The validated method was estimated for linearity, recovery, stability, precision and accuracy. Intraday and interday precisions were 4.3–5.5 and 4.6–7.3%, respectively. The recovery of deferiprone was in the range of 80.1–86.8%. The method was successfully applied to a pharmacokinetic study of deferiprone in six thalassemia patients. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
A liquid chromatography–tandem mass spectrometry (LC–MS/MS) method for the determination of GDC‐0425 concentrations in human plasma has been developed and validated. Supported liquid extraction was used to extract plasma samples (50 μL) and the resulting samples were analyzed using reverse‐phase chromatography and mass spectrometry coupled with a turbo‐ionspray interface. The mass analysis of GDC‐0425 was performed using multiple reaction monitoring transitions in positive ionization mode. The method was validated over the calibration curve range of 1.00–1000 ng/mL using linear regression and 1/x2 weighting. Within‐run relative standard deviation ranged from 0.8 to 5.1%, while between‐run RSD varied from 1.9 to 4.7% for QCs. The accuracy ranged from 90.0 to 101.0% of nominal for within‐run and from 94.0 to 100.0% of nominal for between‐run. Overall extraction recovery was 87.4% for GDC‐0425 and 87.9% for GDC‐0425‐d9. Stability of GDC‐0425 was established in human plasma for 374 days at ?20 and ?70 °C and established in reconstituted sample extracts for 88 h when stored at 2–8 °C. Stable‐labeled internal standard was used to minimize matrix effects. This assay was used to characterize the pharmacokinetics of GDC‐0425 in cancer patients.  相似文献   

6.
A fast, sensitive and reliable ultra performance liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) method has been developed and validated for simultaneous quantitation and pharmacokinetic study of five tanshinones (tanshinone I, tanshinone IIA, tanshinone IIB, dihydrotanshinone I, cryptotanshinone), the bio‐active ingredients of Huo Luo Xiao Ling Dan (HLXLD) in rat plasma. After liquid–liquid extraction, chromatographic separation was accomplished on a Shim‐pack XR‐ODS column (75 × 3.0 mm, 2.2 µm particles) and eluted with a mobile phase consisting of acetonitrile–0.05% formic acid aqueous solution (80:20, v/v) at a flow rate of 0.4 mL/min, and the total run time was 7.0 min. The detection was performed on a triple quadrupole tandem mass spectrometry equipped with an electrospray ionization source in positive ionization and multiple reaction monitoring mode. The lower limits of quantification were 0.050–0.400 ng/mL for all the analytes. Linearity, precision and accuracy, the mean extraction recoveries and matrix effects all satisfied criteria for acceptance. This validated method was successfully applied to a comparative pharmacokinetic study of five bio‐active components in rat plasma after oral administration of HLXLD or Salvia miltiorrhiza extract in normal and arthritic rats. The results showed that there were different pharmacokinetic characteristics among different groups. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Metformin is a well‐known oral antihyperglycemic drug used in treatment of type II diabetes. Analysis of metformin in biological fluids is a challenge owing to its high polarity and small molecular size, which lead to poor retention of metformin on reversed‐phase liquid chromatographic columns. A high‐throughput method was developed and validated for the determination of metformin in rat plasma in support of preclinical toxicology studies, using hydrophilic interaction liquid chromatography tandem mass spectrometry (HILIC‐MS/MS) and Tecan automated sample preparation. Extracted samples were directly injected onto the unbounded silica column with an aqueous–organic mobile phase. This HILIC‐MS/MS method was validated for accuracy, precision, sensitivity, stability, matrix effect, recovery and calibration range. Acceptable intra‐run and inter‐run assay precision (coefficient of variation ≤ 3.9%) and accuracy (99.0–101.8%) were achieved over a linear range of 50–50,000 ng/mL. Metformin is stable in rat plasma for at least 6 h at room temperature, 147 days at ?70°C and through three freeze (?70°C) and thaw cycles. Metformin is also stable in rat whole blood for at least 2 h at room temperature and in an ice–water bath. The validated method was successfully used in support of several preclinical studies where metformin is dosed together with an investigational drug substance. The ruggedness of the validated method was demonstrated by the incurred sample reproducibility test. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
A simple plasma extraction method coupled with liquid chromatography–tandem mass spectrometry (LC/MS/MS) detection was developed and validated for the analysis of endogenous mevalonic acid (MVA), a biomarker indicative of the rate of cholesterol biosynthesis, in human plasma samples. The analyte was extracted from the plasma matrix using a straightforward liquid–liquid sample preparation procedure. The extract supernatants were evaporated, reconstituted in aqueous solvent and injected into the LC/MS/MS system without further processing. The chromatographic separation was achieved on a reverse‐phase high‐performance liquid chromatography column. The accuracy and precision of the method was determined over the concentration range 0.25–25 ng/mL MVA from human plasma extracts in three validation batch runs. Inter‐assay precision (%CV) and accuracy (%RE) of the quality control samples were ≤7.00% (at lower limit quality control) and ≤6.10%, respectively. The sensitivity and throughput of this assay was significantly improved relative to previously published methods, resulting in smaller sample requirements and shorter analysis time. Assay results from a clinical study following the oral administration of an exploratory statin demonstrate that this procedure could potentially be used in the investigation of therapies associated with hypercholesterolemia. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
A high‐performance liquid chromatographic assay with tandem mass spectrometric detection was developed to simultaneously quantify fluoxetine and olanzapine in human plasma. The analytes and the internal standard (IS) duloxetine were extracted from 500 μL aliquots of human plasma through solid‐phase extraction. Chromatographic separation was achieved in a run time of 4.0 min on a Hypersil Gold C18 column (50 × 4.6 mm, 5 µm) using isocratic mobile phase consisting of acetonitrile–water containing 2% formic acid (70:30, v/v), at a flow‐rate of 0.5 mL/min. Detection of analytes and internal standard was performed by electrospray ionization tandem mass spectrometry, operating in positive‐ion and multiple reaction monitoring acquisition mode. The protonated precursor to product ion transitions monitored for fluoxetine, olanzapine and IS were m/z 310.01 → 147.69, 313.15 → 256.14 and 298.1 → 153.97, respectively. The method was validated over the concentration range of 1.00–150.20 ng/mL for fluoxetine and 0.12–25.03 ng/mL for olanzapine in human plasma. The intra‐batch and inter‐batch precision (%CV) across four quality control levels was ≤6.28% for both the analytes. In conclusion, a simple and sensitive analytical method was developed and validated in human plasma. This method is suitable for measuring accurate plasma concentration in bioequivalence study and therapeutic drug monitoring as well, following combined administration. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Y&#;z&#;ak  N.  &#;zden  T.  Eren  S.  Toptan  S. 《Chromatographia》2007,66(1):115-118

A simple sensitive and selective liquid chromatographic–tandem mass spectrometric method was developed and validated for the quantification of azithromycin in human plasma. Roxithromycin was used as the internal standard. The chromatographic separation was performed on a SunFire C18, 50 mm × 2.1, 3.5 μm column at 30 °C with mobile phase consisted of 1.54 g ammonium acetate, 250 mL water, 570 mL acetonitrile, 180 mL methanol and 0.6 mL glacial acetic acid. Flow rate was 0.2 mL min−1. The work-up procedure involved a liquid–liquid extraction of the compounds. Mass spectrometric data were acquired in single ion monitoring. MRM mode of the ions 749.58 > 591.6 and 837.64 > 158.2 for azithromycin and roxithromycin, respectively. The method was validated in the concentration range of 2–1,000 ng mL−1. Absolute recovery of azithromycin was 81.97%. Retention time for azithromycin was 0.9 and 1.1 min for roxithromycin. The run time was 2 min. This method was found suitable to analyse human plasma samples for application in pharmacokinetic, pharmacodynamic, bioavailability/bioequivalance studies.

  相似文献   

11.
A sensitive, rapid and robust HPLC method with tandem mass spectrometry (HPLC/MS/MS) detection has been developed and validated for the quantification of sotalol in rat plasma. Plasma samples were precipitated with acetonitrile before analysis. The chromatographic separation was performed on an Atlantis hydrophilic interaction liquid chromatography Silica column (50 × 2.1 mm, 3 µm) with a gradient mobile phase of 10 mm NH4COOH (containing 0.2% of formic acid) as buffer A and acetonitrile as mobile phase B. Sotalol (m/z 273.2 → 255.1) and atenolol (the internal standard, IS, m/z 267.2 → 190.1) were monitored under positive ionization mode with 5500 QTRAP. Retention time of sotalol and the IS were 2.69 and 3.43 min, respectively. The linear range was 5–500 nm based on the analysis of 0.1 mL of plasma. The intrabatch precision ranged from 1.2 to 6.1%, and the inter‐batch precision was from 3.3 to 6.5%. The coefficient of variation of IS‐normalized matrix factor was 7.6%. Experiments for stability were performed and the analyte was sufficiently stable. A run time of 6 min for each injection made it possible to analyze a high throughput of plasma samples. The assay was successfully applied to the determination of sotalol in rat plasma after a micro‐dose oral administration. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
A rapid and sensitive high‐performance liquid chromatography and electrospray tandem mass spectrometry method was developed and validated for estimation of fulvestrant in rabbit plasma using liquid–liquid extraction. The separation and quantification of fulvestrant were achieved by reverse‐phase chromatography on a Sunfire C18 column (50 × 2.1. i.d., 3.5 μm) with isocratic elution at a flow rate of 300 μL/min using norethistrone as an internal standard from 500 μL plasma sample. The method was validated over the concentration range from 0.092 to 16.937 ng/mL with a lower limit of detection of 0.023 ng/mL. The intra‐day and inter‐day accuracy and precision were within 10%. The recovery was 85 and 90% for fulvestrant and norethistrone respectively. The chromatographic run time was only 2.5 min. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
A high‐throughput and sensitive liquid chromatography–tandem mass spectrometry (LC–MS/MS) method has been developed and validated for the determination of flunarizine in human plasma. Liquid–liquid extraction under acidic conditions was used to extract flunarizine and flunarizine‐d8 from 100 μL human plasma. The mean extraction recovery obtained for flunarizine was 98.85% without compromising the sensitivity of the method. The chromatographic separation was performed on Hypersil Gold C18 (50 × 2.1 mm, 3 μm) column using methanol–10 mm ammonium formate, pH 3.0 (90:10, v/v) as the mobile phase. A tandem mass spectrometer (API‐5500) equipped with an electrospray ionization source in the positive ion mode was used for detection of flunarizine. Multiple reaction monitoring was selected for quantitation using the transitions, m/z 405.2 → 203.2 for flunarizine and m/z 413.1 → 203.2 for flunarizine‐d8. The validated concentration range was established from 0.10 to 100 ng/mL. The accuracy (96.1–103.1%), intra‐batch and inter‐batch precision (CV ≤ 5.2%) were satisfactory and the drug was stable in human plasma under all tested conditions. The method was used to evaluate the pharmacokinetics of 5 and 10 mg flunarizine tablet formulation in 24 healthy subjects. The pharmacokinetic parameters Cmax and AUC were dose‐proportional.  相似文献   

14.
A highly sensitive and specific LC‐ESI‐MS/MS method has been developed and validated for simultaneous quantification of felodipine (FDP) and metoprolol (MPL) in rat plasma (50 μL) using phenacetin as an internal standard (IS) as per the FDA guidelines. Liquid–liquid extraction method was used to extract the analytes and IS from rat plasma. The chromatographic resolution of FDP, MPL and IS was achieved with a mobile phase consisting of 0.2% formic acid in water–acetonitrile (25:75, v/v) with a time program flow gradient on a C18 column. The total chromatographic run time was 4.0 min and the elution of FDP, MPL and IS occurred at 1.05, 2.59 and 1.65 min, respectively. A linear response function was established for the range of concentrations 0.59–1148 and 0.53–991 ng/mL for FDP and MPL, respectively, in rat plasma. The intra‐ and inter‐day accuracy and precision values for FDP and MPL met the acceptance as per FDA guidelines. FDP and MPL were stable in battery of stability studies viz., bench‐top, auto‐sampler and freeze–thaw cycles. The validated assay was applied to a pharmacokinetic study in rats. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
A highly sensitive, specific and rapid liquid chromatography–tandem mass spectrometry technique for the quantification of tasimelteon in human plasma has been developed and validated using tasimelteon‐d5 as internal standard. Liquid–liquid extraction technique with ethyl acetate was used for extraction of tasimelteon from the plasma. The chromatographic separation was achieved on an Agilent Zorbax, Eclipse, C18 (4.6 × 50 mm, 5 μm) column using a mobile phase of acetonitrile and 0.02% formic acid buffer (85:15, v/v) with a flow rate of 0.5 mL/min. A detailed method validation was performed as per the United States Food and Drug Administration guidelines. The linear calibration curve was obtained over the concentration range 0.30–299 ng/mL. The API‐4000 liquid chromatography–tandem mass spectrometry was operated under multiple reaction monitoring mode during analysis. The validated method was successfully applied to estimate plasma concentration of tasimelteon after oral administration of a single dose of a 20 mg capsule in healthy volunteers under fasting conditions. The maximum concentration of the drug achieved in the plasma was 314 ± 147 ng/mL and the time at which this concentration was attained was 0.54 ± 0.22 h.  相似文献   

16.
A rapid, sensitive and specific method using liquid chromatography with tandem mass spectrometric detection (LC‐MS) was developed for the analysis of sauchinone in rat plasma. Di‐O‐methyltetrahydrofuriguaiacin B was used as internal standard (IS). Analytes were extracted from rat plasma by liquid–liquid extraction using ethyl acetate. A 2.1 mm i.d. × 150 mm, 5 µm, Agilent Zorbax SB‐C18 column was used to perform the chromatographic analysis. The mobile phase was methanol–deionized water (80:20, v/v). The chromatographic run time was 7 min per injection and the flow‐rate was 0.2 mL/min. The tandem mass spectrometric detection mode was achieved with electrospray ionization interface in positive‐ion mode (ESI+). The m/z ratios [M + Na]+, m/z 379.4 for sauchinone and m/z 395.4 for IS were recorded simultaneously. Calibration curve were linear over the range of 0.01–5 µg/mL. The lowest limit of quantification was 0.01 µg/mL. The intra‐day and inter‐day precision and accuracy of the quality control samples were 2.94–9.42% and 95.79–108.05%, respectively. The matrix effect was 64.20–67.34% and the extraction recovery was 93.28–95.98%. This method was simple and sensitive enough to be used in pharmacokinetic research for determination of sauchinone in rat plasma. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
A sensitive liquid chromatographic–electrospray ionization–mass spectrometric (LC–MS) method has been developed for direct measurement of the concentration of tiopronin in human plasma. Hydrochloric acid solution was used to stabilize the tiopronin and prevent formation of a dimer, or reaction with endogenous thiols. The method involved liquid–liquid extraction of tiopronin from plasma samples with ethyl acetate, simple reversed-phase chromatography, and mass spectrometric detection with nanogram detection limits. Acetaminophen was used as internal standard (IS). The limit of quantification was 5 ng mL?1 (RSD 4.3%). The method was validated within the linear range 5–500 ng mL?1. The correlation coefficient for the calibration regression line was 0.9997 or better. Intra-day and inter-day accuracy were better than 15%. The method has been successfully used for a pharmacokinetic study with human subjects. Among the pharmacokinetic data obtained, t 1/2 was 2.37 ± 0.63 h and T max was 4 h.  相似文献   

18.
A rapid and reliable method for the detection of five carbapenems (biapenem, imipenem, doripenem, meropenem, and faropenem) in water was developed and validated. After acidification of water samples with acetic acid, carbapenems were isolated using a Bond Elut PPL cartridge. The target compounds were separated using ultra high performance liquid chromatography with a chromatographic run time of 5 min and detected on a triple quadrupole mass spectrometer operated in positive electrospray ionization and multiple reaction monitoring mode. Mean recoveries were in the range of 76.6–106.5%, with satisfactory intraday and interday relative standard deviations lower than 10.0 and 10.8%, respectively. The limits of detection and quantification were in the ranges of 0.05–0.2 µg/L and 0.1–0.5 µg/L, respectively, depending on the analyte. The proposed method was applied to the analysis of river samples and wastewater samples from swine farms, and no carbapenems were detected in the collected samples.  相似文献   

19.
A facile, fast and specific method based on liquid chromatography–tandem mass spectrometry (LC–MS/MS) for the simultaneous quantitation of paracetamol, chlorzoxazone and aceclofenac in human plasma was developed and validated. Sample preparation was achieved by liquid–liquid extraction. The analysis was performed on a reversed‐phase C18 HPLC column (5 μm, 4.6 × 50 mm) using acetonitrile–10 mM ammonium formate pH 3.0 (65:35, v/v) as the mobile phase where atrovastatin was used as an internal standard. A very small injection volume (3 μL) was applied and the run time was 2.0 min. The detection was carried out by electrospray positive and negative ionization mass spectrometry in the multiple‐reaction monitoring mode. The developed method was capable of determining the analytes over the concentration ranges of 0.03–30.0, 0.015–15.00 and 0.15–15.00 μg/mL for paracetamol, chlorzoxazone and aceclofenac, respectively. Intraday and interday precisions (as coefficient of variation) were found to be ≤12.3% with an accuracy (as relative error) of ±5.0%. The method was successfully applied to a pharmacokinetic study of the three analytes after being orally administered to six healthy volunteers.  相似文献   

20.
A rapid and sensitive LC‐MS/MS method was developed for the determination of linarin in small‐volume rat plasma and tissue sample. Sample preparation was employed by the combination of protein precipitation (PPT) and liquid–liquid extraction (LLE) to allow measurement over a 5‐order‐of‐magnitude concentration range. Fast chromatographic separation was achieved on a Hypersil Gold column (100 × 2.1 mm i.d., 5 µm). Mass spectrometric detection was achieved using a triple‐quadrupole mass spectrometer equipped with an electrospray ionization interface operating in positive ionization mode. Quantification was performed using selected reaction monitoring of precursor‐product ion transitions at m/z 593 → 285 for linarin and m/z 447 → 271 for baicalin (internal standard). The total run time was only 2.8 min per sample. The calibration curves were linear over the concentration range of 0.4–200 µg/mL for PPT and 0.001–1.0 µg/mL for LLE. A lower limit of quantification of 1.0 ng/mL was achieved using only 20 μL of plasma or tissue homogenate. The intra‐ and inter‐day precisions in all samples were ≤14.7%, while the accuracy was within ±5.2% of nominal values. The validated method has been successfully applied to pharmacokinetic and tissue distribution study of linarin. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号