首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Silver nanoparticles were formed in situ along with poly(2,5‐dimethoxyaniline) (PDMA) in an interconnected network matrix (reactor), comprising the electronic conductive polymer, PDMA, and a polyelectrolyte, poly(styrene sulfonic acid) (PSS), through the simultaneous reduction of Ag+ ions and polymerization of 2,5‐dimethoxyaniline. In situ ultraviolet‐visible spectroscopy showed that peaks corresponding to the plasmon resonance of silver nanoparticles at 411 nm and the polaronic transition of PDMA at 438 nm provided evidences for the simultaneous formation of silver nanoparticles and PDMA. Transmission electron microscopy and size distribution analysis revealed the presence of spherical silver nanoparticles with an average diameter of 12 nm in the composite. X‐ray photoelectron spectroscopy showed that the amine units in PDMA changed to imine units upon the formation of silver nanoparticles. A comprehensive mechanism for the formation of the PDMA‐PSS‐Ag nanocomposite is proposed. A 10‐fold increase in the conductivity was noticed for the PDMA–PSS–Ag nanocomposite (1 S/cm) in comparison with the PDMA–PSS composite (0.1 S/cm). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3843–3852, 2006  相似文献   

2.
Silver nanoparticles were prepared by UV irradiation from silver salts, such as AgBF4 or AgNO3, when dissolved in an amphiphilic film of poly((oxyethylene)9 methacrylate)‐graft‐poly((dimethyl siloxane)n methacrylate), POEM‐g‐mPDMS. The in situ formation of silver nanoparticles in the graft copolymer film was confirmed by transmission electron microscopy (TEM), UV‐visible spectroscopy, and wide angle X‐ray scattering (WAXS). The results demonstrated that the use of AgBF4 yielded silver nanoparticles with a smaller size (~5 nm) and narrower particle distribution when compared with AgNO3. The formation of silver nanoparticles was explained in terms of the interaction strength of the silver ions with the ether oxygens of POEM, as revealed by differential scanning calorimetry (DSC) and X‐ray photoelectron spectroscopy (XPS). It was thus concluded that a stronger interaction of silver ions with the ether oxygens results in a more stable formation of silver nanoparticles, which produces uniform and small‐sized nanoparticles. DSC and small angle X‐ray scattering (SAXS) data also showed the selective incorporation and in situ reduction of the silver ions within the hydrophilic POEM domains. Excellent mechanical properties of the nanocomposite films (3–5 × 105 dyn/cm2) were observed, mostly because of the confinement of silver nanoparticles in the POEM chains as well as interfaces created by the microphase separation of the graft copolymer film. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1283–1290, 2007  相似文献   

3.

Silver nanoparticles have been prepared in a polyacrylamide (PA) matrix, as well as in the presence of a hyperbranched polyamine/polyacrylamide combined system (HB‐PA) by using a reductive technique. The stability of colloidal solution of silver nanoparticles is higher (5 months) in combined matrix compared to PA alone (4 months). The prepared silver nanoparticles were characterized by different spectroscopic and analytical techniques such as FTIR, UV‐visible, X‐ray diffraction, TEM etc. TEM and XRD studies confirmed the formation of well‐dispersed nanoparticles with an average size of 9.91 nm and 8.5 nm for PA and HB‐PA matrices, respectively. The antibacterial activity of silver nanoparticles in both the matrices was tested against Bacillus Subtilis bacteria by using the diffusion disc technique. The result shows that the antibacterial activity of the active agent, Ag(0) is a little higher in the case of HB‐PA system. The dielectric constant of the matrices decreases with an increase in frequency, but the values increase with an increase of concentration of silver nanoparticles in PA matrix.  相似文献   

4.
Silver/carbon nanoparticles (9 nm) were incorporated, as reinforcements, into a matrix of poly(methyl methacrylate) via in situ miniemulsion polymerization. It was found by differential scanning calorimetry that the glass‐transition temperature of the poly(methyl methacrylate) showed an improvement of 14 °C with only 0.5 wt % nanoparticles in comparison with a pure poly(methyl methacrylate) control, which was also obtained by miniemulsion polymerization under the same conditions. This increase was related to a polymer chain mobility restriction due to a combination of bound plastic and joint plastic shell effects at the interphase and the surrounding regions. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 511–518, 2007.  相似文献   

5.
《Comptes Rendus Chimie》2015,18(5):586-592
Hybrid materials based on polyvinyl alcohol (PVA) and mercaptopropyltriethoxysilane (MPTES) with embedded silver nanoparticles (AgNps) have been synthesized via a sol–gel method. Silver nanoparticles were obtained via thermal reduction in the presence of PVA as a stabilizer and reducing agent. The formation of silver nanoparticles within the PVA/MPTES matrix was proven by FTIR, XRD, and TEM analysis. The antibacterial activity of PVA/AgNps/MPTES materials was determined against strains belonging to Gram-positive and Gram-negative bacteria by disk diffusion and growth curve methods. The hybrid materials showed high antibacterial activity, which depends on the concentration of the silver nanoparticles.  相似文献   

6.
Using aqueous extraction of red sanders powder as a reducing agent, silver and copper bimetallic nanoparticles were in situ generated in cotton fabrics. Silver and copper nanoparticles were also generated separately for comparison. The resulted nanocomposite cotton fabrics (NCFs) were characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and antibacterial tests. SEM analysis indicated the generation of more number of nanoparticles when bimetallic source solutions were used. Further, the size range of the generated bimetallic nanoparticles was found to be lower than when individual metal nanoparticles were generated in NCFs. XRD analysis confirmed the in situ generation of silver and copper nanoparticles when equimolar bimetallic salt source solutions were utilized. The NCFs with bimetallic nanoparticles exhibited higher antibacterial activity against both Gram-negative and Gram-positive bacteria and hence can be considered for applications as antibacterial bed and dressing materials.  相似文献   

7.
In this study, poly(vinylidene fluoride‐co‐chlorotrifluoroethylene)‐graft‐poly(oxyethylene methacrylate), P(VDF‐co‐CTFE)‐g‐POEM, an amphiphilic comb copolymer with hydrophobic P(VDF‐co‐CTFE) backbone and hydrophilic POEM side chains at 73:27 wt % was synthesized. The POEM side chains were grafted from the P(VDF‐co‐CTFE) mainchain backbone via atom transfer radical polymerization (ATRP) using direct initiation of the chlorine atoms in CTFE units. Synthesis of microphase‐separated P(VDF‐co‐CTFE)‐g‐POEM comb copolymer was successful, as confirmed by nuclear magnetic resonance (1H NMR), FTIR spectroscopy, and transmission electron microscopy (TEM). Nanocomposite films were prepared using the comb copolymer as a template film and the in situ reduction of AgCF3SO3 precursor to silver nanoparticles under UV irradiation. Silver nanoparticles with 4–8 nm in average size were in situ created in the solid state template film, as revealed by TEM, UV–visible spectroscopy, and wide angle X‐ray scattering (WAXS). Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) presented the selective incorporation and the in situ growth of silver nanoparticles within the hydrophilic POEM domains of microphase‐separated comb copolymer film. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 702–709, 2008  相似文献   

8.
Nanocomposites based on silver (Ag) and organically modified silicate (Ormosil) were prepared by an in situ reduction method, in which silver nitrate, tetraethoxysilane and N‐[3‐(trimethoxysilyl)propyl]diethylenetriamine (ATS) acted as precursor, linker, and colloidal suspension stabilizer, respectively. The objective of the study was to produce silver nanoparticles through AgNO3 chemical reduction in a continuous media, in which aminosilanes act as superficial modifiers of Ag nanoparticles, inhibiting their growth and preventing aggregation. The physical properties of the Ormosil/Ag composites were examined using NMR, electron spin resonance, scanning electron microscope, transmission electron microscope, and thermal gravimetric analysis spectroscopy, the results of which indicated that Ag was incorporated in the Ormosil matrix after impregnation. The Ag content and surface morphology of the Ormosil/Ag composites depended on the initial concentration of AgNO3. The antibacterial effects of the Ormosil/Ag composites were assessed by the zone of inhibition and plate‐counting methods, and an excellent antibacterial performance was discovered. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

9.
Silver ions being less toxic than silver nanoparticles, a more safe material can be obtained to be used as antimicrobial coating. This can be achieved by using thiol chemistry and covalently attach the silver nanoparticles in the coating. Our aim is to produce a coating having antimicrobial properties of silver ions but with the silver nanoparticles firmly attached in the coating. Here, we present a way to produce silver nanoparticles that can be used as a component in a coating or as such to produce an antimicrobial coating. The silver nanoparticles presented here are stabilized by a copolymer (poly(butyl acrylate–methyl methacrylate)) that is soft and has well-known good film-producing properties. The reversible addition-fragmentation chain transfer radical polymerization technique used to prepare the polymers provides conveniently a thiol group for effective binding of the silver nanoparticles to the polymers and thus to the coating.  相似文献   

10.
Polyfluorenes with pendant allyl groups were prepared by terpolymerization of 9,9‐dihexylfluorene‐2,7‐bis(trimethyleneborate), 2,7‐dibromo‐9,9‐bis(2‐allyloxyethyl)fluorene, and 4,7‐dibromo‐2,1,3‐benzothiazole, or 4,7‐dibromo‐2,1,3‐naphthoselenadiazole using Suzuki coupling reaction. The subsequent hydrosilylation reaction of these precursor polymers with ethoxydimethylsilane quantitatively converted the allyl groups to ethoxysilyl groups. Hybridization of the emitting polyfluorenes with silicone was successfully achieved by the solvent‐free sol–gel reaction of tetraethoxysilane and silanol‐terminated polydimethylsiloxane in the presence of the ethoxysilyl‐functionalized polyfluorenes. Fluorescence spectra of these luminescent silicones revealed that emitting polyfluorenes were dispersed homogeneously in the matrix of silicone without aggregation. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 622–628  相似文献   

11.
The efficiency of Förster resonance energy transfer (FRET) can be enhanced in the presence of a metal. Herein, we demonstrate the increased efficiency for a novel model sensor system where FRET is shown to occur between Rhodamine 6G in the bulk sol–gel matrix and Texas Red, which is held a fixed distance away by covalent attachment onto a silane spacer. Silver colloids are formed using light to initiate the reduction of a silver salt, which can be achieved at controlled locations within the film. Both the fluorescence intensity and lifetime maps and analysis indicate that an enhanced FRET efficiency has been achieved in the presence of silver nanoparticles. An increase in efficiency of 1.2–1.5 times is demonstrated depending on the spacer used. The novelty of our approach lies in the method of silver‐nanoparticle formation, which allows for the accurate positioning of the silver nanoparticles and hence selective fluorescence enhancement within a biocompatible host material. Our work gives a practical demonstration of metal‐enhanced FRET and demonstrates the ability of such systems to be developed for molecular‐recognition applications that could find use in lab‐on‐a‐chip technologies.  相似文献   

12.
This paper presents the development of a procedure, which enables the analysis of nine pharmaceutical drugs in wastewater using gas chromatography‐mass spectrometry (GC‐MS) associated with solid‐phase microextraction (SPME) for the sample preparation. Experimental design was applied to optimize the in situ derivatization and the SPME extraction conditions. Ethyl chloroformate (ECF) was employed as derivatizing agent and polydimethylsiloxane‐divinylbenzene (PDMS‐DVB) as the SPME fiber coating. A fractional factorial design was used to evaluate the main factors for the in situ derivatization and SPME extraction. Thereafter, a Doehlert matrix design was applied to find out the best experimental conditions. The method presented a linear range from 0.5 to 10 μg/L, and the intraday and interday precision were lower than 16%. Applicability of the method was verified from real influent and effluent samples of a wastewater treatment plant, as well as from samples of an industry wastewater and a river.  相似文献   

13.
Three synthetic methods have been developed for embedding nanosize metal clusters into polymers: (i) in situ synthesis of silver nanoparticles in cross-linked poly-acrylamide gels, (ii) implantation of cryochemically produced silver nanoparticles into poly-acrylamide gels, and (iii) encapsulation of metal nanoparticles in poly-p-xylylene films. All methods allow one to produce 3–20 nm stable metal clusters embedded into bulk materials, thin films or fine particles dispersed in organic solvents or water. Results on some physical properties of the metal-polymer systems thus obtained are presented.  相似文献   

14.
武德珍 《高分子科学》2014,32(4):424-431
Triphase polyimide nanocomposite films were fabricated using barium titanate (BaTiO3) with high dielectric constant and silver (Ag) with high conductivity as fillers. In situ method was utilized to obtain the homogeneous dispersion of nanoparticles. The in situ polymerization of polyimide precursor-poly(amic acid) was performed in the presence of BaTiO3 particles. Silver compound 1,1,1-trifluoro-2,4-pentadionato silver(I) was added into the BaTiO3 containing poly(amic acid) solution to achieve silver nanoparticles via in situ self metallization technique. The thermally induced reduction converted silver (I) to metallic silver with concomitant imidization of poly(amic acid) to polyimide. Both BaTiO3 and silver nanoparticles were uniformly dispersed in the polyimide substrate. The dependence of dielectric behavior on the BaTiO3 and Ag contents was studied. The incorporation of small amount of silver nanoparticles greatly increased dielectric constant of composite films.  相似文献   

15.
A novel silver/poly(carbonate urethane) nanocomposite was prepared through in situ reduction of a silver salt (AgNO3) added to a solution consisting of a commercial poly(carbonate urethane) dissolved in N,N‐dimethylformamide (DMF). In this system, the presence of the poly(carbonate urethane) was proved to protect the silver nanoparticles, whose formation was confirmed by means of UV–vis spectroscopy, from aggregation phenomena. The silver morphology developed in the solid state after DMF casting was imaged by FESEM. Homogeneous dispersion of silver nanoprisms in the poly(carbonate urethane) matrix was clearly observed. The effects of dispersion of silver nanoparticles within the poly(carbonate urethane) matrix were investigated by means of ATR‐FTIR and multifrequency dynamic mechanical thermal analyses. The obtained results revealed that the presence of silver nanoparticles modifies both the phase and the viscoelastic behaviors of poly(carbonate urethane). As a matter of fact, the hydrogen bond formation in the hard and soft segments was found to be hindered and the molecular motions of the soft segments were restricted, because a comparatively higher activation energy was required for the related α‐relaxation process. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 344–350, 2008  相似文献   

16.
Ag-doped TiO2 wet gels were prepared by sol?Cgel process using a mixture of titanium isopropoxide and silver nitrate as precursor solution, with Ag:Ti molar ratio of 1:6. After drying, the titanium oxide xerogels were used as template in the preparation of nano and microcrystals of metallic silver. The porous network and the structure of the titania matrix influenced the type and distribution of silver crystal produced on the composite surface. Silver nanoparticles segregated to the surface of titania xerogel during the heating step, giving rise to nanocrystals that coalesced forming microcrystals with different shapes and faceting. The microcrystals grew on the composite surface, reaching sizes between 5 and 20 microns and self-organized of different ways. The xerogel heated at 600 °C formed by anatase, rutile and silver nanoparticles exhibited considerable photocatalytic activity to degrade methylene blue.  相似文献   

17.
Silver‐based nanocomposites are known to act as biocides against a series of microorganisms and are largely studied as an alternative to substitute conventional antibiotics that show decreasing efficacy. In this work, an eco‐friendly method to synthesize silver nanoparticles assembled on the surface of hexaniobate crystals is reported. By means of ion exchange, K+ ions of layered potassium hexaniobate were partially substituted by Ag+ ions and the resulting material was exposed to UV light. The irradiation allowed the reduction of silver ions with consequent formation of silver nanoparticles located only on the hexaniobate surface, whereas Ag+ ions located in the interlayer space remained in the ionic form. Increasing UV‐light exposure times allowed controlling of the silver nanoparticle size. The antibacterial effects of the pristine potassium hexaniobate and of silver‐containing hexaniobate samples were tested against Escherichia coli (E. coli). The antibacterial efficacy was determined to be related to the presence of silver in hexaniobate. An increasing activity against E. coli was observed with the decrease in silver nanoparticles size, suggesting that silver nanoparticles of distinct sizes interact differently with bacterial cell walls.  相似文献   

18.
A microphase‐separated, amphiphilic graft copolymer consisting of a poly (vinyl chloride) (PVC) backbone and poly(oxyethylene methacrylate) (POEM) side chains, (PVC‐g‐POEM at 62:38 wt %) was synthesized via atom transfer radical polymerization (ATRP). Nuclear magnetic resonance (1H NMR), FTIR spectroscopy, and transmission electron microscopy (TEM) clearly revealed that the “grafting from” method using ATRP was successful and that the graft copolymer molecularly self‐assembled into discrete nanophase domains of continuous PVC and isolated POEM regions. The self‐assembled graft copolymer film was used to template the growth of silver nanoparticles in solid state by introducing a AgCF3SO3 precursor and a UV irradiation process. The in situ formation of silver nanoparticles in the graft copolymer template film was confirmed by TEM, UV–visible spectroscopy, and wide angle X‐ray scattering. FTIR spectroscopy and X‐ray photoelectron spectroscopy also demonstrated the selective incorporation and in situ formation of silver nanoparticles within the hydrophilic POEM domains, presumably due to strong interactions between the silver and the ether oxygen in POEM. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3911–3918, 2008  相似文献   

19.
This work reports on the synthesis of three acid oligosiloxane‐urethane dimethacrylates and their use to obtain hybrid nanocomposite films, in which the presynthesized silver nanoparticles (NPs) were incorporated before photopolymerization, or produced via in situ photoreduction of the silver nitrate (AgNO3) precursor into the formulation, without any conventional reducing agent. All samples were characterized by 1H NMR, FT‐infrared and UV spectroscopies, photodifferential scanning calorimetry (photo‐DSC), transmission electron microscopy (TEM), and energy‐dispersive X‐ray (EDX) analysis. Fourier transformed infrared spectroscopy and photo‐DSC results showed that dimethacrylates having hydrophilic segment of poly(ethylene oxide) type in structure are more reactive than the acid oligosiloxane dimethacrylate. When another urethane dimethacrylate is taken as a comonomer, the photopolymerization rate (0.112–0.132 s?1) and the degree of conversion (82–93%) significantly increased. Experimental evidence of the existence of nanosilver into the polymer matrix generated upon UV irradiation has been supported by UV spectroscopy, EDX and TEM analysis, the last allowing a visualization of the formation of silver NPs with size between 2 and 15 nm. Mechanical parameters and wettability of the photocrosslinked films are also discussed in the prospect of further potential applications in the biomedical field. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

20.
In the present work, silver nanoparticles (AgNPs) were in situ generated in cellulose matrix using leaf extract of Azadirachta indica as a reducing agent. The cellulose/AgNP composite films prepared were characterized by FTIR, X-ray diffraction (XRD), scanning electron microscope, and antibacterial tests. The infrared spectra indicated the association of organic materials with silver nanoparticles to serve as capping agents. Scanning electron micrographs showed that synthesized silver nanoparticles were nearly uniform and spherical in shape with diameter in the range of 61–110?nm. XRD confirmed the formation of AgNPs and Ag–O nanoparticles. The nanocomposite films showed good antibacterial activity against Escherichia coli bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号