首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MS/MS experiment and accurate mass measurement are powerful tools in metabolite identification. However, sometimes these data do not provide enough information to assign an unambiguous structure to a metabolite. In combination with MS techniques, hydrogen/deuterium (H/D) exchange can provide additional information for structural elucidation by determination of the number of exchangeable hydrogen atoms in a structure. In this study, the principal phase I metabolites of iso‐phenylcyclopentylamine in rat bile were identified by high‐performance liquid chromatography with electrospray ionization quadrupole time‐of‐flight mass spectrometry (ESI‐Q‐TOF‐MS). Since N‐oxidation may occur because of the existence of the primary amino group in the structure, it was difficult to differentiate the hydroxylated metabolites from N‐oxides by ESI‐Q‐TOF‐MS alone. Therefore, online H/D exchange technique was applied to solve this problem. Finally, 25 phase I metabolites were detected and structurally described, in which 11 were confirmed to be N‐oxides. This study demonstrated the effectiveness of high‐resolution mass spectrometry in combination with an online H/D exchange technique in rapid identification of drug metabolites, especially in discriminating hydroxylated metabolites from N‐oxides. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Artemisinin drugs have become the first‐line antimalarials in areas of multi‐drug resistance. However, monotherapy with artemisinin drugs results in comparatively high recrudescence rates. Autoinduction of CYP‐mediated metabolism, resulting in reduced exposure, has been supposed to be the underlying mechanism. To better understand the autoinduction of artemisinin drugs, we evaluated the biotransformation of artemisinin, also known as Qing‐hao‐su (QHS), and its active derivative dihydroartemisinin (DHA) in vitro and in vivo, using LTQ‐Orbitrap hybrid mass spectrometer in conjunction with online hydrogen (H)/deuterium (D) exchange high‐resolution (HR)‐LC/MS (mass spectrometry) for rapid structural characterization. The LC separation was improved allowing the separation of QHS parent drugs and their metabolites from their diastereomers. Thirteen phase I metabolites of QHS have been identified in liver microsomal incubates, rat urine, bile and plasma, including six deoxyhydroxylated metabolites, five hydroxylated metabolites, one dihydroxylated metabolite and deoxyartemisinin. Twelve phase II metabolites of QHS were detected in rat bile, urine and plasma. DHA underwent similar metabolic pathways, and 13 phase I metabolites and 3 phase II metabolites were detected. Accurate mass data were obtained in both full‐scan and MS/MS mode to support assignments of metabolite structures. Online H/D exchange LC‐HR/MS experiments provided additional evidence in differentiating deoxydihydroxylated metabolites from mono‐hydroxylated metabolites. The results showed that the main phase I metabolites of artemisinin drugs are hydroxylated and deoxyl products, and they will undergo subsequent phase II glucuronidation processes. This study also demonstrated the effectiveness of online H/D exchange LC‐HR/MSn technique in rapid identification of drug metabolites. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
In the paper, we have demonstrated the possibility of performing hydrogen/deuterium (H/D) exchange of proteins in the region of gas‐phase ion formation in an electrospray ion source by saturating the electrospray ionization source with vapors of a deuterating agent (D2O or MeOD). In this region, charged droplets are shrinking and the protein ions transfer into the gas phase. As a model protein, we have used ubiquitin whose ion mobility spectrometry and gas‐phase H/D exchange in the vacuum part of a mass spectrometer demonstrated the presence of gas‐phase conformers with different cross sections and H/D exchange rates. In our experiments, we observed monomodal deuterium distributions for all solvents, charge states, desolvating capillary temperature and types of deuterating agent. Also, we found that the number of H/D exchanges increases with an increasing desolvating capillary temperature and decreasing charge state. We observed that solution composition (49 : 50 : 1 H2O : MeOH : formic acid or 99 : 1 H2O : formic acid) influences the charge‐state distribution but did not change the degree of H/D exchange for the same charge state. Electron‐capture dissociation fragmentation shows that higher charge states contain a segment that is protected from access by the deuterating agent. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
The diversity of azaphilones in stromatal extracts of the fungus Hypoxylon fragiforme was investigated and linked to their biosynthetic machineries by using bioinformatics. Nineteen azaphilone-type compounds were isolated and characterized by NMR spectroscopy and mass spectrometry, and their absolute stereoconfigurations were assigned by using Mosher ester analysis and electronic circular dichroism spectroscopy. Four unprecedented bis-azaphilones, named hybridorubrins A–D, were elucidated, in addition to new fragirubrins F and G and various known mitorubrin derivatives. Only the hybridorubrins, which are composed of mitorubrin and fragirubrin moieties, exhibited strong inhibition of Staphylococcus aureus biofilm formation. Analysis of the genome of H. fragiforme revealed the presence of two separate biosynthetic gene clusters (BGCs) hfaza1 and hfaza2 responsible for azaphilone formation. While the hfaza1 BGC likely encodes the assembly of the backbone and addition of fatty acid moieties to yield the (R)-configured series of fragirubrins, the hfaza2 BGC contains the necessary genes to synthesise the widely distributed (S)-mitorubrins. This study is the first example of two distant cross-acting fungal BGCs collaborating to produce two families of azaphilones and bis-azaphilones derived therefrom.  相似文献   

5.
Hydrogen/deuterium exchange reactions involving protonated triglycine and deuterated ammonia (ND(3)) have been examined in the gas phase using a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. Ab initio and density functional theory (DFT) calculations have been carried out to model the exchanges and to obtain energetics and vibrational frequencies for molecules involved in the proposed exchange mechanisms. Structural optimization and frequency calculations have been performed at the B3LYP level of theory with the 6-311+G(d,p) basis set. Transition states have been calculated at the same level of theory and basis set as above using the QST2 and QST3 methods. Single-point energy calculations have been performed at the MP2/6-311+G(d,p) level. Six labile sites of protonated triglycine were found to undergo H/D exchange. Of these six labile hydrogens, two are amide, three are ammonium, and one is carboxyl. Detailed mechanisms for each of these transfers are proposed. Qualitative onium ion and tautomer mechanisms for the exchanges of ammonium and amide hydrogens, respectively, using semiempirical calculations were suggested in previous studies by Beauchamp et al. As shown by the current ab initio and DFT calculations completed during this study, the mechanisms proposed in that study are notionally correct; however, the tautomer mechanisms are shown here to be the result of the fact that a second stable isomer of protonated triglycine exists in which the amide1 carbonyl oxygen is protonated. The exchange of the carboxyl hydrogen is found to proceed via a transition state resembling an ammonium ion interacting with a carboxylate moiety via two hydrogen bonds. The current work thus provides significant mechanistic and structural detail for a considerably more in-depth understanding of the processes involved in gas phase H/D exchange of peptides.  相似文献   

6.
Transition of proteins from the solution to the gas phase during electrospray ionization remains a challenging problem despite the large amount of attention it has received during the past few decades. One of the major questions relates to the extent to which proteins in the gas phase retain their condensed phase structures. We have used in‐electrospray source hydrogen/deuterium exchange to determine the number of deuterium incorporations as a function of protein mass, charge state and temperature of the desolvating capillary where the reaction occurs. All experiments were performed on a Thermo LTQ FT Ultra equipped with a 7‐T superconducting magnet. Ions were generated by an IonMax Electrospray ion source operated in the positive ESI mode. Deuterium exchange was performed by introducing a droplet of D2O beneath the ESI capillary. We systematically investigated gas phase hydrogen/deuterium (H/D) exchange under atmospheric pressure for peptides and proteins of different molecular weights from 1 to 66 kDa. We observed that almost all proteins demonstrate similar exchange rates for all charge states and that these rates increase exponentially with the temperature of the desolvating capillary. We did not observe any clear correlation of the number of H/D exchanges with the value of the cross section for a corresponding charge state. We have demonstrated the possibility of performing in‐ESI source H/D exchange of large proteins under atmospheric pressure. The simplicity of the experimental setup makes it a useful experimental technique that can be applied for the investigation of gas phase conformations of proteins. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Previously (Kostyukevich et al. Anal Chem 2014, 86, 2595), we have reported that oligosaccharides anions are produced in the electrospray in two different conformations, which differ by the rate of gas phase hydrogen/deuterium (H/D) exchange reaction. In the present paper, we apply the in‐electrospray ionization (ESI) source H/D exchange approach for the investigation of the oligosaccharides cations formed by attaching of metal ions (Na, K) to the molecule. It was observed that the formation of different conformers can be manipulated by varying the temperature of the desolvating capillary of the ESI interphase. Separation of the conformers was performed using gas phase H/D approach. Because the conformers have different rates of the H/D exchange reaction, the deuterium distribution spectrum becomes bimodal. It was found that the conformation corresponding to the slow H/D exchange rate dominates in the spectrum when the capillary temperature is low (~200 °C), and the conformation corresponding to the fast H/D exchange rate dominates at high (~400 °C) temperatures. In the intermediate temperature region, two conformers are present simultaneously. It was also observed that large oligosaccharide requires higher temperature for the formation of another conformer. It was found that the presence of the conformers considerably depends on the solvent used for ESI and the pH. We have compared these results with the previously performed in‐ESI source H/D exchange experiments with peptides and proteins. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
A new fragmentation process was proposed to interpret the characteristic product ion at m/z 130 of protonated arginine. The α‐amino group was dissociated from protonated arginine and then combined with the (M + H‐NH3) fragment to form an ion‐neutral complex which further generated a hydroxyl‐amino exchange intermediate compound through an ion‐molecule reaction. This intermediate compound was synthesized from argininamide through a diazo reaction, and then the reaction mixture was analyzed using liquid chromatography combined with mass spectrometry (LC‐MS). The collision‐induced dissociation experiments under the same conditions revealed that this intermediate compound produced the characteristic product ion at m/z 130 as well as protonated arginine, and in addition, density functional theory calculations were performed to confirm simultaneous loss of NH3 and CO from this intermediate to give the m/z 130 ion.  相似文献   

9.
The experimental investigation of site‐specific intra‐ionic hydrogen/deuterium (H/D) exchange in the low‐energy collision‐induced dissociation (CID) product ion spectra of protonated small molecules generated by electrospray ionisation (ESI) is presented. The observation of intra‐ionic H/D exchange in such ions under low‐energy CID conditions has hitherto been rarely reported. The data suggest that the intra‐ionic H/D exchange takes place in a site‐specific manner between the ionising deuteron, localised at either a tertiary amine or a tertiary amine‐N‐oxide, and a γ‐hydrogen relative to the nitrogen atom. Nuclear magnetic resonance (NMR) spectroscopy measurements showed that no H/D exchange takes place in solution, indicating that the reaction occurs in the gas phase. The compounds analysed in this study suggested that electron‐withdrawing groups bonded to the carbon atom bearing the γ‐hydrogen can preclude exchange. The effect of the electron‐withdrawing group appears dependent upon its electronegativity, with lower χ value groups still allowing exchange to take place. However, the limited dataset available in this study prevented robust conclusions being drawn regarding the effect of the electron‐withdrawing group. The observation of site‐specific intra‐ionic H/D exchange has application in the area of structural elucidation, where it could be used to introduce an isotopic label into the carbon skeleton of a molecule containing specific structural features. This could increase the throughput, and minimise the cost, of such studies due to the obviation of the need to produce a deuterium‐labelled analogue by synthetic means. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Analytical Chemistry Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA Differentiation of the seven isomers of methyl guanine has been accomplished by monitoring gas-phase hydrogen/deuterium (H/D) exchange reactions of the protonated molecular ions with deuterium oxide (D2O) in a Fourier transform mass spectrometer. In each case a distinctive reaction rate for the first H/D exchange was observed, and exchanges of up to three deuterium atoms occurred with characteristic ion abundances that could be used to differentiate the isomers. O6-Methyl guanine, for example, showed only one slow H/D exchange with D2O, whereas l-methyl guanine exchanged two hydrogen atoms at a significantly faster rate. On comparison of the possible resonance structures of each protonated isomer with the experimental information about the number and rate of H/D exchanges observed, a reaction mechanism involving a concerted proton abstraction-deuterium cation donation was proposed.  相似文献   

11.
By injection of the proton bound homodimer [DMF.H+.DMF] of N,N-dimethylformamide (DMF) generated in an external ion source into a mixture of DMF and a second base within the cell of a Fourier transform ion cyclotron resonance (FT-ICR) spectrometer the equilibria between [DMF.H+.DMF] and the other possible proton bound dimers [DMF.H+.base] and [base.H+.base] have been studied for 13 different bases. Strongly polar bases like aliphatic amides and dimethyl sulfoxide (DMSO) exchange both DMF in [DMF.H+.DMF] by a two step process, while the almost non-polar amines exchange only one DMF. If the base is a primary or secondary amine, the proton bound heterodimer [DMF.H+.amine] reacts further by the addition of one DMF to create a proton bound trimer [(DMF)2.H+.amine]. The affinity deltaG(DMFH+) of the bases towards protonated DMF relative to neutral DMF depends linearly on the difference deltaGB of the gas phase basicity of DMF and the other base, but different correlation lines are obtained for polar and non-polar ligands (deltaGDMFH+ = 0.44GB(base)-375 [kJ/mol] (r = 0.97) and deltaGDMFH+ = 0.46GB(base)-397 [kJ/mol] (r = 0.99), respectively). This different behavior is explained by a different character of the proton bridge in the heterodimers containing only polar ligands and those incorporating a non-polar ligand besides DMF. The former dimers contain a more or less symmetric proton bridge while the latter can be viewed as a protonated base solvated by DMF. The available data have been used to calculate the molecular pair gas phase basicity of DMF and the 13 bases used and to estimate the dissociation energies of the bonds of the proton bridge in various proton bound heterodimers.  相似文献   

12.
In vivo metabolites of ketorolac (KTC) have been identified and characterized by using liquid chromatography positive ion electrospray ionization high resolution tandem mass spectrometry (LC/ESI‐HR‐MS/MS) in combination with online hydrogen/deuterium exchange (HDX) experiments. To identify in vivo metabolites, blood urine and feces samples were collected after oral administration of KTC to Sprague–Dawley rats. The samples were prepared using an optimized sample preparation approach involving protein precipitation and freeze liquid separation followed by solid‐phase extraction and then subjected to LC/HR‐MS/MS analysis. A total of 12 metabolites have been identified in urine samples including hydroxy and glucuronide metabolites, which are also observed in plasma samples. In feces, only O‐sulfate metabolite and unchanged KTC are observed. The structures of metabolites were elucidated using LC‐MS/MS and MSn experiments combined with accurate mass measurements. Online HDX experiments have been used to support the structural characterization of drug metabolites. The main phase I metabolites of KTC are hydroxylated and decarbonylated metabolites, which undergo subsequent phase II glucuronidation pathways. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Benzopbenones a initially protonated at the carbonyl group were prepared by electron-impact induced dissocation of 1,1-diphenylpropanols (compounds 1-5). These protonated ketones decompose in the ion source and the second field-free region of a reversed geometry mass spectrometer by proton migration to one of the phenyl groups and subsequent elimination of benzene. In the case of derivatives substituted by methoxy groups and trifluoromethyl groups respectively, the proton migrates predominantly to the more bask benzene ring, resulting in the elimination of anisole in the former case and of benzene in die latter case. A study of protonated benzopbenones labelled at the phenyl ring and at the carbonyl group shows that only a few interannular H/D exchange steps precede the fragmentation. This is observed not only for metastable ions in the magnetic sector instilment but also for ions of long lifetimes investigated by Fourier-transform-ion cyclotron resonance (FT-ICR) Spectrometry. This is in contrast to the arene elimination from protonated 1,ω-dipbenylalkanes and related polyphenylalkanes which fragment by complete positional exchange of all hydrogen atoms at the aromatic rings. The special behaviour of protonated benzophenones is attributed to a low barrier for the decomposition of a chemically activated arenium ion b, which arises from the initial proton transfer. Once b is formed, it decomposes quickly without much interannular proton exchange.  相似文献   

14.
It is demonstrated that a cationic iridium(III) dichloride phenanthroline complex is capable of C H activation and H/D exchange. It can cleave benzylic and unactivated secondary C H bonds, but exhibits unique selectivity when compared to similar systems that have been studied in the condensed phase. Gas‐phase rate constants and kinetic isotope effects are reported for a variety of substrates and the analysis is supported by DFT calculations at the M06/QZVP level.  相似文献   

15.
Understanding on a molecular level the acid‐catalysed decomposition of the sugar monomers from hemicellulose and cellulose (e.g. glucose, xylose), the main constituent of lignocellulosic biomass is very important to increase selectivity and reaction yields in solution, key steps for the development of a sustainable renewable industry. In this work we reported a gas‐phase study performed by electrospray triple quadrupole mass spectrometry on the dehydration mechanism of d ‐glucose. In the gas phase, reactant ions corresponding to protonated d ‐glucose were obtained in the ESI source and were allowed to undergo collisionally activated decomposition (CAD) into the quadrupole collision cell. The CAD mass spectrum of protonated d ‐glucose is characterized by the presence of ionic dehydrated daughter ion (ionic intermediates and products), which were structurally characterized by their fragmentation patterns. In the gas phase d ‐glucose dehydration does not lead to the formation of protonated 5‐hydroxymethyl‐2‐furaldehyde, but to a mixed population of m/z 127 isomeric ions. To elucidate the d ‐glucose dehydration mechanism, 3‐O‐methyl‐d ‐glucose was also submitted to the mass spectrometric study; the results suggest that the C3 hydroxyl group plays a key role in the reaction mechanism. Furthermore, protonated levulinic acid was found to be formed from the monodehydrated d ‐glucose ionic intermediate, an alternative pathway other than the known route consisting of 5‐hydroxymethyl‐2‐furaldehyde double hydration. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
A new method is described for performing hydrogen/deuterium (H/D) exchange in an electrospray ionization (ESI) source. The use of liquid chromatography (LC)-mass spectrometer equipped with an ESI source and deuterium oxide (D2O) as the sheath liquid allows H/D exchange experiments to be performed on-line. This directly provides information for determining the number and position of exchangeable hydrogens, aiding in the elucidation of the structures of drug metabolites. To demonstrate the utility of this method, LC-mass spectrometry (MS) and LC-MS/MS experiments were performed using either H2O or D2O as sheath liquid on a matrix metalloprotease (MMP) inhibitor (PD 0200126) and its metabolites. Examination of the mass shift of the deuteriated molecule from that of the protonated molecule allowed the number of exchangeable protons to be determined. Interpretation of the production-spectra helped to determine the location of the exchanged protons and assisted in the assignment of the site(s) of modification for each metabolite.  相似文献   

17.
The hydrogen/deuterium (H/D) exchange of protonated and alkali-metal cationized Arg-Gly and Gly-Arg peptides with D(2)O in the gas phase was studied using electrospray ionization quadropole ion trap mass spectrometry. The Arg-Gly and Gly-Arg alkali metal complexes exchange significantly more hydrogens than protonated Arg-Gly and Gly-Arg. We propose a mechanism where the peptide shifts between a zwitterionic salt bridge and nonzwitterionic charge solvated conformations. The increased rate of H/D exchange of the alkali metal complexes is attributed to the peptide metal complexes' small energy difference between the salt-bridge conformation and the nonzwitterionic charge-solvated conformation. Implications for the applicability of this mechanism to other zwitterionic systems are discussed.  相似文献   

18.
Sweroside, a major active iridoid in Swertia pseudochinensis Hara, is recognized as an effective agent in the treatment of liver injury. Based on previous reports, the relatively short half‐life (64 min) and poor bioavailability (approximately 0.31%) in rats suggested that not only sweroside itself but also its metabolites could be responsible for the observed hepato‐protective effect. However, few studies have been carried out on the metabolism of sweroside. Therefore, the present study aimed at identifying the metabolites of sweroside in rat urine after a single oral dose (100 mg/kg). With ultra‐high‐performance liquid chromatography coupled with electrospray ionization quadrupole time‐of‐flight tandem mass spectrometry (UHPLC/Q‐TOF‐MS), the metabolic profile revealed 11 metabolites in rat urine, including phase I, phase II and aglycone‐related products. The chemical structures of metabolites were proposed based on accurate mass measurements of protonated or deprotonated molecules and their fragmentation patterns. Our findings showed that the aglycone of sweroside (M05) and its glucuronide conjugate (M06) were principal circulating metabolites in rats. While several other metabolic transformations, occurring via reduction, N‐heterocyclization and N‐acetylation after deglycosylation, were also observed. Two metabolites (M05 and M06) were isolated from the rat urine for structural elucidation and identifcation of reaction sites. Both M05 and M06 were characterized by 1H, 13C and two‐dimensional nuclear magnetic resonance (NMR) spectroscopy. UHPLC/Q‐TOF‐MS analysis has provided an important analytical platform to gather metabolic profile of sweroside. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
A mass spectrometric study of protonated warfarin and its derivatives (compounds 1 to 5) has been performed. Losses of a substituted benzylideneacetone and a 4‐hydroxycoumarin have been observed as a result of retro‐Michael reaction. The added proton is initially localized between the two carbonyl oxygens through hydrogen bonding in the most thermodynamically favorable tautomer. Upon collisional activation, the added proton migrates to the C‐3 of 4‐hydroxycoumarin, which is called the dissociative protonation site, leading to the formation of the intermediate ion‐neutral complex (INC). Within the INC, further proton transfer gives rise to a proton‐bound complex. The cleavage of one hydrogen bond of the proton‐bound complex produces the protonated 4‐hydroxycoumarin, while the separation of the other hydrogen bond gives rise to the protonated benzylideneacetone. Theoretical calculations indicate that the 1, 5‐proton transfer pathway is most thermodynamically favorable and support the existence of the INC. Both substituent effect and the kinetic method were utilized for explaining the relative abundances of protonated 4‐hydroxycoumarin and protonated benzylideneacetone derivative. For monosubstituted warfarins, the electron‐donating substituents favor the generation of protonated substituted benzylideneacetone, whereas the electron‐withdrawing groups favor the formation of protonated 4‐hydroxycoumarin. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Liquid chromatography‐mass spectrometry (LC‐MS) method revealed the plasma metabolite profiles in major depressive disorder patients treated with escitalopram (ECTP) (n = 7). Depression severity was assessed according to the 17‐item Hamilton Depression Rating Scale. Metabolic profiles were derived from major depressive disorder subject blood samples collected after ECTP treatment. Blood plasma was separated and processed in order to effectively extract metabolites, which were then analyzed using LC‐MS. We identified 19 metabolites and elucidated their structures using LC‐tandem MS (LC‐MS/MS) combined with elemental compositions derived from accurate mass measurements. We further used online H/D exchange experiments to verify the structural elucidations of each metabolite. Identifying molecular metabolites may provide critical insights into the pharmacological and clinical effects of ECTP treatment and may also provide useful information informing the development of new antidepressant treatments. These detailed plasma metabolite analyses may also be used to identify optimal dose concentrations in psychopharmacotherapeutic treatment through drug monitoring, as well as forming the basis for response predictions in depressed subjects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号