首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a′(G). A graph is called 2‐degenerate if any of its induced subgraph has a vertex of degree at most 2. The class of 2‐degenerate graphs properly contains seriesparallel graphs, outerplanar graphs, non ? regular subcubic graphs, planar graphs of girth at least 6 and circle graphs of girth at least 5 as subclasses. It was conjectured by Alon, Sudakov and Zaks (and much earlier by Fiamcik) that a′(G)?Δ + 2, where Δ = Δ(G) denotes the maximum degree of the graph. We prove the conjecture for 2‐degenerate graphs. In fact we prove a stronger bound: we prove that if G is a 2‐degenerate graph with maximum degree Δ, then a′(G)?Δ + 1. © 2010 Wiley Periodicals, Inc. J Graph Theory 69: 1–27, 2012  相似文献   

2.
An edge‐coloring of a graph G is equitable if, for each vV(G), the number of edges colored with any one color incident with v differs from the number of edges colored with any other color incident with v by at most one. A new sufficient condition for equitable edge‐colorings of simple graphs is obtained. This result covers the previous results, which are due to Hilton and de Werra, verifies a conjecture made by Hilton recently, and substantially extends it to a more general class of graphs. © 2010 Wiley Periodicals, Inc. J Graph Theory 66:175‐197, 2011  相似文献   

3.
A proper edge coloring of a graph G is called adjacent vertex-distinguishing acyclic edge coloring if there is no 2-colored cycle in G and the coloring set of edges incident with u is not equal to the coloring set of edges incident with v, where uvE(G). The adjacent vertex distinguishing acyclic edge chromatic number of G, denoted by x Aa (G), is the minimal number of colors in an adjacent vertex distinguishing acyclic edge coloring of G. If a graph G has an adjacent vertex distinguishing acyclic edge coloring, then G is called adjacent vertex distinguishing acyclic. In this paper, we obtain adjacent vertex-distinguishing acyclic edge coloring of some graphs and put forward some conjectures.  相似文献   

4.
5.
The r‐acyclic edge chromatic number of a graph is defined to be the minimum number of colors required to produce an edge coloring of the graph such that adjacent edges receive different colors and every cycle C has at least min(|C|, r) colors. We show that (r ? 2)d is asymptotically almost surely (a.a.s.) an upper bound on the r‐acyclic edge chromatic number of a random d‐regular graph, for all constants r ≥ 4 and d ≥ 2. © 2006 Wiley Periodicals, Inc. J Graph Theory 53: 101–125, 2006  相似文献   

6.
A sequence r1, r2, …, r2n such that ri=rn+ i for all 1≤in is called a repetition. A sequence S is called non‐repetitive if no block (i.e. subsequence of consecutive terms of S) is a repetition. Let G be a graph whose edges are colored. A trail is called non‐repetitive if the sequence of colors of its edges is non‐repetitive. If G is a plane graph, a facial non‐repetitive edge‐coloring of G is an edge‐coloring such that any facial trail (i.e. a trail of consecutive edges on the boundary walk of a face) is non‐repetitive. We denote π′f(G) the minimum number of colors of a facial non‐repetitive edge‐coloring of G. In this article, we show that π′f(G)≤8 for any plane graph G. We also get better upper bounds for π′f(G) in the cases when G is a tree, a plane triangulation, a simple 3‐connected plane graph, a hamiltonian plane graph, an outerplanar graph or a Halin graph. The bound 4 for trees is tight. © 2010 Wiley Periodicals, Inc. J Graph Theory 66: 38–48, 2010  相似文献   

7.
The acyclic list chromatic number of every planar graph is proved to be at most 7. © 2002 Wiley Periodicals, Inc. J Graph Theory 40: 83–90, 2002  相似文献   

8.
An infinite family of cubic edge‐transitive but not vertex‐transitive graphs with edge stabilizer isomorphic to ℤ2 is constructed. © 2000 John Wiley & Sons, Inc. J Graph Theory 35: 152–160, 2000  相似文献   

9.
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic (2-colored) cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a(G). Let Δ=Δ(G) denote the maximum degree of a vertex in a graph G. A complete bipartite graph with n vertices on each side is denoted by Kn,n. Alon, McDiarmid and Reed observed that a(Kp−1,p−1)=p for every prime p. In this paper we prove that a(Kp,p)≤p+2=Δ+2 when p is prime. Basavaraju, Chandran and Kummini proved that a(Kn,n)≥n+2=Δ+2 when n is odd, which combined with our result implies that a(Kp,p)=p+2=Δ+2 when p is an odd prime. Moreover we show that if we remove any edge from Kp,p, the resulting graph is acyclically Δ+1=p+1-edge-colorable.  相似文献   

10.
1-平面图的结构性质及其在无圈边染色上的应用   总被引:1,自引:0,他引:1  
一个图称为是1-平面的如果它可以画在一个平面上使得它的每条边最多交叉另外一条边.本文描述了任意1-平面图中小于等于7度点之邻域的局部结构,解决了由Fabrici和Madaras提出的两个关于1-平面图图类中轻图存在性的问题,证明了每个最大度是△的1-平面图G是无圈列表max{2△-2,△+83}-边可选的.  相似文献   

11.
We prove the theorem from the title: the acyclic edge chromatic number of a random d‐regular graph is asymptotically almost surely equal to d + 1. This improves a result of Alon, Sudakov, and Zaks and presents further support for a conjecture that Δ(G) + 2 is the bound for the acyclic edge chromatic number of any graph G. It also represents an analog of a result of Robinson and the second author on edge chromatic number. © 2005 Wiley Periodicals, Inc. J Graph Theory 49: 69–74, 2005  相似文献   

12.
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a′(G). It was conjectured by Alon, Sudakov, and Zaks that for any simple and finite graph G, a′(G)?Δ + 2, where Δ=Δ(G) denotes the maximum degree of G. We prove the conjecture for connected graphs with Δ(G)?4, with the additional restriction that m?2n?1, where n is the number of vertices and m is the number of edges in G. Note that for any graph G, m?2n, when Δ(G)?4. It follows that for any graph G if Δ(G)?4, then a′(G)?7. © 2009 Wiley Periodicals, Inc. J Graph Theory 61: 192–209, 2009  相似文献   

13.
14.
Let G = (V,E) be a graph or digraph and r : VZ+. An r‐detachment of G is a graph H obtained by ‘splitting’ each vertex ν ∈ V into r(ν) vertices. The vertices ν1,…,νr(ν) obtained by splitting ν are called the pieces of ν in H. Every edge uν ∈ E corresponds to an edge of H connecting some piece of u to some piece of ν. Crispin Nash‐Williams 9 gave necessary and sufficient conditions for a graph to have a k‐edge‐connected r‐detachment. He also solved the version where the degrees of all the pieces are specified. In this paper, we solve the same problems for directed graphs. We also give a simple and self‐contained new proof for the undirected result. © 2003 Wiley Periodicals, Inc. J Graph Theory 43: 67–77, 2003  相似文献   

15.
A face of an edge‐colored plane graph is called rainbow if the number of colors used on its edges is equal to its size. The maximum number of colors used in an edge coloring of a connected plane graph Gwith no rainbow face is called the edge‐rainbowness of G. In this paper we prove that the edge‐rainbowness of Gequals the maximum number of edges of a connected bridge face factor H of G, where a bridge face factor H of a plane graph Gis a spanning subgraph H of Gin which every face is incident with a bridge and the interior of any one face fF(G) is a subset of the interior of some face f′∈F(H). We also show upper and lower bounds on the edge‐rainbowness of graphs based on edge connectivity, girth of the dual graphs, and other basic graph invariants. Moreover, we present infinite classes of graphs where these equalities are attained. © 2009 Wiley Periodicals, Inc. J Graph Theory 62: 84–99, 2009  相似文献   

16.
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and it is denoted by a(G). From a result of Burnstein it follows that all subcubic graphs are acyclically edge colorable using five colors. This result is tight since there are 3-regular graphs which require five colors. In this paper we prove that any non-regular connected graph of maximum degree 3 is acyclically edge colorable using at most four colors. This result is tight since all edge maximal non-regular connected graphs of maximum degree 3 require four colors.  相似文献   

17.
《Journal of Graph Theory》2018,87(4):460-474
An odd k‐edge‐coloring of a graph G is a (not necessarily proper) edge‐coloring with at most k colors such that each nonempty color class induces a graph in which every vertex is of odd degree. Pyber (1991) showed that every simple graph is odd 4‐edge‐colorable, and Lužar et al. (2015) showed that connected loopless graphs are odd 5‐edge‐colorable, with one particular exception that is odd 6‐edge‐colorable. In this article, we prove that connected loopless graphs are odd 4‐edge‐colorable, with two particular exceptions that are respectively odd 5‐ and odd 6‐edge‐colorable. Moreover, a color class can be reduced to a size at most 2.  相似文献   

18.
We prove that a 2‐connected, outerplanar bipartite graph (respectively, outerplanar near‐triangulation) with a list of colors L (v ) for each vertex v such that (resp., ) can be L‐list‐colored (except when the graph is K3 with identical 2‐lists). These results are best possible for each condition in the hypotheses and bounds. © 2008 Wiley Periodicals, Inc. J Graph Theory 59: 59–74, 2008  相似文献   

19.
An edge‐face coloring of a plane graph with edge set E and face set F is a coloring of the elements of EF so that adjacent or incident elements receive different colors. Borodin [Discrete Math 128(1–3):21–33, 1994] proved that every plane graph of maximum degree Δ?10 can be edge‐face colored with Δ + 1 colors. We extend Borodin's result to the case where Δ = 9. © 2010 Wiley Periodicals, Inc. J Graph Theory 66:332‐346, 2011  相似文献   

20.
For an integer l > 1, the l‐edge‐connectivity of a connected graph with at least l vertices is the smallest number of edges whose removal results in a graph with l components. A connected graph G is (k, l)‐edge‐connected if the l‐edge‐connectivity of G is at least k. In this paper, we present a structural characterization of minimally (k, k)‐edge‐connected graphs. As a result, former characterizations of minimally (2, 2)‐edge‐connected graphs in [J of Graph Theory 3 (1979), 15–22] are extended. © 2003 Wiley Periodicals, Inc. J Graph Theory 44: 116–131, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号