首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Calculations of 1 JNH, 1h JNH and 2h JNN spin–spin coupling constants of 27 complexes presenting N–H·N hydrogen bonds have allowed to analyze these through hydrogen‐bond coupling as a function of the hybridization of both nitrogen atoms and the charge (+1, 0, ? 1) of the complex. The main conclusions are that the hybridization of N atom of the hydrogen bond donor is much more important than that of the hydrogen bond acceptor. Positive and negative charges (cationic and anionic complexes) exert opposite effects while the effect of the transition states ‘proton‐in‐the‐middle’ is considerable. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
In the series of diaminoenones, large high‐frequency shifts of the 1H NMR of the N? H group in the cis‐position relative to the carbonyl group suggests strong N? H···O intramolecular hydrogen bonding comprising a six‐membered chelate ring. The N? H···O hydrogen bond causes an increase of the 1J(N,H) coupling constant by 2–4 Hz and high‐frequency shift of the 15N signal by 9–10 ppm despite of the lengthening of the relevant N? H bond. These experimental trends are substantiated by gauge‐independent atomic orbital and density functional theory calculations of the shielding and coupling constants in the 3,3‐bis(isopropylamino)‐1‐(aryl)prop‐2‐en‐1‐one (12) for conformations with the Z‐ and E‐orientations of the carbonyl group relative to the N? H group. The effects of the N? H···O hydrogen‐bond on the NMR parameters are analyzed with the atoms‐in‐molecules (AIM) and natural bond orbital (NBO) methods. The AIM method indicates a weakening of the N? H···O hydrogen bond as compared with that of 1,1‐di(pyrrol‐2‐yl)‐2‐formylethene (13) where N? H···O hydrogen bridge establishes a seven‐membered chelate ring, and the corresponding 1J(N,H) coupling constant decreases. The NBO method reveals that the LP(O) →σ*N? H hyperconjugative interaction is weakened on going from the six‐membered chelate ring to the seven‐membered one due to a more bent hydrogen bond in the former case. A dominating effect of the N? H bond rehybridization, owing to an electrostatic term in the hydrogen bonding, seems to provide an increase of the 1J(N,H) value as a consequence of the N? H···O hydrogen bonding in the studied diaminoenones. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
The X‐ray crystal structures of the polyfluorinated complexes [5,5′‐bis(HCF2CF2CF2CF2CH2OCH2)‐2,2′‐bpy]MI2 ( 55‐8F‐PtI 2 and 55‐8F‐PdI 2 where M = Pt and Pd, respectively) were obtained. These two structures are found to show not only two different types of intramolecular, six‐membered cyclic C–H···F–C interactions (F2C–H···F–C and HC–H···F–C) as important structural features but also alternating fluorinated and non‐fluorinated layers. The F2C–H···F–C interactions, which are close to the metal core, are much better structurally characterized in this type of complexes with fluorous ponytails at the 5,5′ positions than those previously reported at the 4,4′ positions. The molecular planes of (bpy)MI2 are extended by self‐matching, using two C–H···I hydrogen bonds and one C–H···F–C blue‐shifting hydrogen bond. The F2C–H···F–C hydrogen bonds interact at the supramolecular level such that one polyfluorinated ponytail of the title compounds is transoid without an intramolecular C–H···F–C interaction, while the other polyfluorinated ponytail is cisoid with an intramolecular C–H···F–C interaction. Why one ponytail is cisoidal while the other is transoidal will be explained. Furthermore, the second type of C–H···F–C interactions involving the methylene H atom has been identified for the first time. In addition, these two metal structures are studied by density functional theory (DFT).  相似文献   

4.
According to the density functional theory calculations, the X···H···N (X?N, O) intramolecular bifurcated (three‐centered) hydrogen bond with one hydrogen donor and two hydrogen acceptors causes a significant decrease of the 1hJ(N,H) and 2hJ(N,N) coupling constants across the N? H···N hydrogen bond and an increase of the 1J(N,H) coupling constant across the N? H covalent bond in the 2,5‐disubsituted pyrroles. This occurs due to a weakening of the N? H···N hydrogen bridge resulting in a lengthening of the N···H distance and a decrease of the hydrogen bond angle at the bifurcated hydrogen bond formation. The gauge‐independent atomic orbital calculations of the shielding constants suggest that a weakening of the N? H···N hydrogen bridge in case of the three‐centered hydrogen bond yields a shielding of the bridge proton and deshielding of the acceptor nitrogen atom. The atoms‐in‐molecules analysis shows that an attenuation of the 1hJ(N,H) and 2hJ(N,N) couplings in the compounds with bifurcated hydrogen bond is connected with a decrease of the electron density ρH···N at the hydrogen bond critical point and Laplacian of this electron density ?2ρH···N. The natural bond orbital analysis suggests that the additional N? H···X interaction partly inhibits the charge transfer from the nitrogen lone pair to the σ*N? H antibonding orbital across hydrogen bond weakening of the 1hJ(N,H) and 2hJ(N,N) trans‐hydrogen bond couplings through Fermi‐contact mechanism. An increase of the nitrogen s‐character percentage of the N? H bond in consequence of the bifurcated hydrogen bonding leads to an increase of the 1J(N,H) coupling constant across the N? H covalent bond and deshielding of the hydrogen donor nitrogen atom. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
According to the 1H, 13C and 15N NMR spectroscopic data and DFT calculations, the E‐isomer of 1‐vinylpyrrole‐2‐carbaldehyde adopts preferable conformation with the anti‐orientation of the vinyl group relative to the carbaldehyde oxime group and with the syn‐arrangement of the carbaldehyde oxime group with reference to the pyrrole ring. This conformation is stabilized by the C? H···N intramolecular hydrogen bond between the α‐hydrogen of the vinyl group and the oxime group nitrogen, which causes a pronounced high‐frequency shift of the α‐hydrogen signal in 1H NMR (~0.5 ppm) and an increase in the corresponding one‐bond 13C–1H coupling constant (ca 4 Hz). In the Z‐isomer, the carbaldehyde oxime group turns to the anti‐position with respect to the pyrrole ring. The C? H···O intramolecular hydrogen bond between the H‐3 hydrogen of the pyrrole ring and the oxime group oxygen is realized in this case. Due to such hydrogen bonding, the H‐3 hydrogen resonance is shifted to a higher frequency by about 1 ppm and the one‐bond 13C–1H coupling constant for this proton increases by ~5 Hz. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
In the 1H NMR spectra of the 1‐vinylpyrroles with amino‐ and alkylsulfanyl groups in 5 and 2 positions, an extraordinarily large difference between resonance positions of the HA and HB terminal methylene protons of the vinyl group is discovered. Also, the one‐bond 1J(Cβ,HB) coupling constant is surprisingly greater than the 1J(Cβ,HA) coupling constant in pyrroles under investigation, while in all known cases, there was a reverse relationship between these coupling constants. These spectral anomalies are substantiated by quantum chemical calculations. The calculations show that the amine nitrogen lone pair is removed from the conjugation with the π‐system of the pyrrole ring so that it is directed toward the HB hydrogen. These factors are favorable to the emergence of the intramolecular C–HB???N hydrogen bonding in the s‐cis(N) conformation. On the other hand, the spatial proximity of the sulfur to the HB hydrogen provides an opportunity of the intramolecular C–HB???S hydrogen bonding in the s‐cis(S) conformation. Presence of the hydrogen bond critical points as well as ring critical point for corresponding chelate ring revealed by a quantum theory of atoms in molecules (QTAIM) approach confirms the existence of the weak intramolecular C–H???N and C–H???S hydrogen bonding. Therefore, an unusual high‐frequency shift of the HB signal and the increase in the 1J(Cβ,HB) coupling constant can be explained by the effects of hydrogen bonding. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
On the basis of a comparison of chemical shifts and wavenumbers of several secondary thioamides and amides having monocationic substituents attached to thiocarbamoyl or carbamoyl groups by a polymethylene chain, new intramolecular unconventional N···H+···N hydrogen bonding effects were discovered. It is argued that the CH2—N rotation is hindered and two +H···NHCH3 non‐equivalent protons occur in a proton spectrum of hydrochloride 1a (at 10.68 and 2.77 ppm, respectively) instead of two +NH2CH3 protons. Presumably, the above steric factors inhibit the acidic hydrolysis of 1a (stabilized by strong intramolecular N···H+···N hydrogen bonds) to an amide and prevent intramolecular cyclization of 2a (stabilized by strong intramolecular neutral–neutral N···HN hydrogen bonds) to a cyclic amidine. Postulation of additional dihydrogen bond formation is helpful in understanding the spectroscopic differences of 4 and 5 . The above new bonding is also compared with intramolecular N···H—N+ hydrogen bonds in primary amine salts 7 and 8 . In contrast to 3 , a cooperative hydrogen bonded system is observed in 9 and 10 . The weak hydrogen bonds in 7 – 10 facilitate the hydrolysis and cyclization reactions of secondary thioamides. The spectroscopic data for secondary (thio)amides are especially useful for characterizing the electronic situation at the (thio)carbamoyl nitrogen atoms and they are perfectly correlated with the reactivity. Examples of chelation of protons by thioamides ( 11 and 12 ), which contain strongly electron‐donating pyrimidine groups, are presented to show the contribution of dihydrogen bonding in the protonation reaction similar to 1 and 4 . Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
The relationships among geometrical parameters, estimated binding energies, and nuclear magnetic resonance data in –C?O···H? O? intramolecular H‐bond of some substituted 2‐hydroxybenzaldehyde have theoretically been studied by B3LYP and MP2 methods with 6‐311++G** and AUG‐cc‐PVTZ basis sets. All substituents increase estimated hydrogen bond energies EHBs (with the exception of NO2 and C2H5), which are in good correlation with geometrical parameters, topological properties of electron density calculated at O···H bond critical points and ring critical points by using atoms in molecules method, the results of natural bond orbital analysis, and calculated nuclear magnetic resonance data. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

9.
The 1JC‐F coupling constant can be useful to probe the conformational landscape of organofluorine compounds and the intramolecular interactions governing the stereochemistry of these compounds. Neighboring oxygen electron lone pairs and a carbonyl group relative to a C─F bond affect this coupling constant in an opposite way, and therefore, analysis of the interactions involving these entities simultaneously indicates which effect dominates 1JC‐F. Spin–spin coupling constant calculations for a series of fluorinated tetrahydropyrans, cyclohexanones, and dihydropyran‐3‐ones indicated that an electrostatic/dipolar interaction between the C─F and C═O bonds is more important than the steric interaction between the C─F bond and the oxygen electron lone pairs. An intuitive consequence of such outcome is that this interaction not only drives the coupling constant but can also be taken into account when aiming at the stereochemical control of functionalized organofluorine compounds.  相似文献   

10.
1H and 13C NMR spectroscopy of a series of 1‐vinyl‐2‐(2′‐heteroaryl)‐pyrroles were employed for the analysis of their electronic and spatial structure. The C—H···N intramolecular interaction between the α‐hydrogen of the vinyl group and the pyridine nitrogen, a kind of hydrogen bonding, was detected in 1‐vinyl‐2‐(2′‐pyridyl)pyrrole, which disappeared in its iodide methyl derivative. It was shown that this interaction is stronger than the C—H···O and C—H···S interactions in 1‐vinyl‐2‐(2′‐furyl)‐ and ‐2‐(2′‐thienyl)‐pyrroles. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
In 1975 a large number of coupling constants were measured in 2‐fluorobenzamide labeled with 15N. Some of them were assigned to couplings through intramolecular N? H···F hydrogen bonds (HBs). These couplings change dramatically when CDCl3 is replaced by DMSO‐d6. In this theoretical paper we provide density functional theory (DFT) calculations that justify the existence of a weak HB in the absence of solvent, while solvents that act as HB acceptors break down the intramolecular hydrogen bond (IMHB) of 2‐fluorobenzamide. Atoms in molecules (AIM) analyses and Steiner‐Limbach plots were used to analyze the structure of the compounds. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
In 4‐fluoroisoquinoline‐5‐sulfonyl chloride, C9H5ClFNO2S, (I), one of the two sulfonyl O atoms lies approximately on the isoquinoline plane as a result of minimizing the steric repulsion between the chlorosulfonyl group and the neighbouring F atom. In (S)‐(−)‐4‐fluoro‐N‐(1‐hydroxypropan‐2‐yl)isoquinoline‐5‐sulfonamide, C12H13FN2O3S, (II), there are two crystallographically independent molecules (Z′ = 2). The molecular conformations of these two molecules differ in that the amine group of one forms an intramolecular bifurcated hydrogen bond with the F and OH groups, whilst the other forms only a single intramolecular N—H...F hydrogen bond. The N—H...F hydrogen bonds correspond to weak coupling between the N(H) and 19F nuclei, observed in the 1H NMR solution‐state spectra. In (S)‐(−)‐4‐[(4‐fluoroisoquinolin‐5‐yl)sulfonyl]‐3‐methyl‐1,4‐diazepan‐1‐ium chloride, C15H19FN3O2S+·Cl, (III), the isoquinoline plane is slightly deformed, suggestive of a steric effect induced by the bulky substituent on the sulfonyl group.  相似文献   

13.
The F–H···YZ2 (Y = C, Si, BH, A1H;Z = H, PH3) systems were examined using density functional theory calculations. The main focus of this work is to demonstrate that the chemistry of Y(PH3)2 exhibits a novel feature which is a central Y atom with unexpected high basicity. Further, the hydrogen bond strength can be adjusted by the substitution of H atoms of YH2 by PH3 groups. The FH···C(PH3)2 system has the strongest hydrogen bond interaction, which is larger than a conventional hydrogen bond. In addition to electrostatic interaction, donor‐acceptor interaction also plays an important role in determining the hydrogen bond strength. Therefore, a carbon atom can not only be the hydrogen bond acceptor but also can create an unusual stabilized hydrogen bond complex. Also, X3B–YZ2 (X = H, F; Y = C, Si, BH, A1H;Z = PH3, NH3) systems were examined, and it was found that the bond strength is controlled predominately by the HOMO‐LUMO gap (ΔIP). The smaller the ΔIP, the larger the bond dissociation energy of the B–Y bond. In addition, NH3 is a better electron‐donating group than PH3, and thus forms the strongest donor‐acceptor interaction between X3B and Y(NH3)2.  相似文献   

14.
Both 7‐carboxyl­ato‐8‐hydroxy‐2‐methyl­quinolinium monohydrate, C11H9NO3·H2O, (I), and 7‐carboxy‐8‐hydroxy‐2‐methyl­quinolinium chloride monohydrate, C11H10NO3+·Cl·H2O, (II), crystallize in the centrosymmetric P space group. Both compounds display an intramolecular O—H⋯O hydrogen bond involving the hydroxy group; this hydrogen bond is stronger in (I) due to its zwitterionic character [O⋯O = 2.4449 (11) Å in (I) and 2.5881 (12) Å in (II)]. In both crystal structures, the HN+ group participates in the stabilization of the structure via intermolecular hydrogen bonds with water mol­ecules [N⋯O = 2.7450 (12) Å in (I) and 2.8025 (14) Å in (II)]. In compound (II), a hydrogen‐bond network connects the Cl anion to the carboxylic acid group [Cl⋯O = 2.9641 (11) Å] and to two water mol­ecules [Cl⋯O = 3.1485 (10) and 3.2744 (10) Å].  相似文献   

15.
The title compound, C9H12N6O3, shows a syn‐glycosylic bond orientation [χ = 64.17 (16)°]. The 2′‐deoxyfuranosyl moiety exhibits an unusual C1′‐exo–O4′‐endo (1T0; S‐type) sugar pucker, with P = 111.5 (1)° and τm = 40.3 (1)°. The conformation at the exocyclic C4′—C5′ bond is +sc (gauche), with γ = 64.4 (1)°. The two‐dimensional hydrogen‐bonded network is built from intermolecular N—H...O and O—H...N hydrogen bonds. An intramolecular bifurcated hydrogen bond, with an amino N—H group as hydrogen‐bond donor and the ring and hydroxymethyl O atoms of the sugar moiety as acceptors, constrains the overall conformation of the nucleoside.  相似文献   

16.
An ab initio computational study of the dual functions of C?S group in the M2C?S ··· HCN (M = H, F, Cl, Br, HO, H3C, H2N) complex has been performed at the MP2(Full)/aug‐cc‐pVTZ level. The C?S group can act as both the electron donor and acceptor, thus two minima complexes were found for each molecular pairs. The interaction energy of hydrogen bond in the F, Cl, or Br substituted complexes is less negative than that in the corresponding H2CS one, while the interaction energy of the σ‐hole interaction is more negative. The OH substitution weakens the hydrogen bond, whereas the H3C and H2N substitution strengthens it. The σ‐hole interaction in the HO, H3C, and H2N complexes is very weak. The substitution effect has been understood with electrostatic induction and conjugation effects. The energy decomposition analysis has been performed for the halogen‐substituted complexes. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012.  相似文献   

17.
Structures of Ionic Di(arenesulfonyl)amides. 8. Sodium Bis[di(4‐fluorobenzenesulfonyl)amido‐N]argentate: A Heterobimetallic Complex Exhibiting a Lamellar Layer Structure and Short C–H···F–C Interlayer Contacts Na[Ag{N(SO2–C6H4–4‐F)2}2] (monoclinic, C2/c, Z′ = 1/2) is the first heterobimetallic representative in a well‐documented class of layered inorgano‐organic solids where the inorganic component is comprised of metal cations and coordinating N(SO2)2 groups and the outer regions are formed by the aromatic rings of the di(arenesulfonyl)amide entities, which adopt a folded conformation approximating to mirror symmetry. The inversion‐symmetric bis(amido)argentate unit of the novel compound displays an exactly linear N–Ag–N core and short Ag–N bonds of 217.55(17) pm (at ?140 °C); the coordination number of the silver ion is extended to 2 + 6 by four internal and two external Ag···O secondary interactions. The polar lamella is constructed from rows of Na+ ions located on twofold axes, alternating with bis(amido)argentate strands reinforced by Ag···O interactions and weak C–H···O hydrogen bonds; Na+ is embedded in an O6 environment. Adjacent layers are cross‐linked via short C–H···F–C contacts suggestive of weak hydrogen bonding enhanced by cooperativity.  相似文献   

18.
The 1H, 13C and 15N NMR studies have shown that the E and Z isomers of pyrrole‐2‐carbaldehyde oxime adopt preferable conformation with the syn orientation of the oxime group with respect to the pyrrole ring. The syn conformation of E and Z isomers of pyrrole‐2‐carbaldehyde oxime is stabilized by the N? H···N and N? H···O intramolecular hydrogen bonds, respectively. The N? H···N hydrogen bond in the E isomer causes the high‐frequency shift of the bridge proton signal by about 1 ppm and increase the 1J(N, H) coupling by ~3 Hz. The bridge proton shows further deshielding and higher increase of the 1J(N, H) coupling constant due to the strengthening of the N? H···O hydrogen bond in the Z isomer. The MP2 calculations indicate that the syn conformation of E and Z isomers is by ~3.5 kcal/mol energetically less favorable than the anti conformation. The calculations of 1H shielding and 1J(N, H) coupling in the syn and anti conformations allow the contribution to these constants from the N? H···N and N? H···O hydrogen bondings to be estimated. The NBO analysis suggests that the N? H···N hydrogen bond in the E isomer is a pure electrostatic interaction while the charge transfer from the oxygen lone pair to the antibonding orbital of the N? H bond through the N? H···O hydrogen bond occurs in the Z isomer. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Polysulfonylamines. CLXXXIV. Crystal Structures of Molecular Triphenylphosphanegold(I) Di(4‐X‐benzenesulfonyl)amides: Isomorphism and Close Packing (X = Me, F, Cl, NO2) vs. Structure‐Determining C–X···Au/O Halogen Bonds (X = Br, I) In order to study the structure‐determining influence that halogen bonding can exert during the course of crystallization, solid‐state structures are compared for two previously reported and four new molecular gold(I) complexes of the type Ph3P–Au–N(SO2–C6H4–4‐X)2, each featuring linear P,N coordination at gold and two phenyl rings with varying p‐substituents X = Me, F, Cl, NO2, Br or I. The compounds were synthesized by reactions of Ph3PAuX (X = Cl or I) with the corresponding silver di(arenesulfonyl)amides, crystallized from dichloromethane, and characterized by low‐temperature X‐ray diffraction. The Me, F, Cl and NO2 congeners are isomorphic and crystallize without solvent inclusion in the chiral orthorhombic space group P212121 (Z′ = 1). These structures are governed by isotropic close packing via three‐dimensional 21 symmetry, incidentally supported by an invariant set of C–H···O=S hydrogen bonds, CH/π interactions and π/π stackings of aromatic rings; in particular, the hard halogen atoms of the fluoro and the chloro homologues are not involved in X···Au, X···O or X···X interactions. The higher homologues, with soft halogen atoms, were obtained as a dichloromethane hemisolvate for X = Br and a corresponding monosolvate for X = I, each triclinic in the centrosymmetric space group (Z′ = 1). Here, the primary structural effect is implemented by infinite chains in which translation‐related molecules are connected for the bromo compound by a bifurcated Au···Br(2)···O=S interaction, for the iodo congener by an equivalent Au···I(2)···O=S interaction and a short halogen bond C–I(1)···O=S. The latter bond is stronger than a similar C–Br···O=S interaction and induces a conformational adjustment of the (CSO2)2N group from the normal twofold symmetry in the bromo compound to an energetically unfavourable asymmetric form in the iodo homologue. In both cases, pairs of antiparallel molecular catemers are associated into strands via sixfold phenyl embraces, the strands are stacked to form layers, the solvent molecules are intercalated between adjacent layers, and the crystal packings are reinforced by a number of C–H···O=S hydrogen bonds and interactions of aromatic rings.  相似文献   

20.
The 2‐(benzo[d]thiazole‐2′‐yl)‐N‐alkylanilines have previously revealed the presence of a strong intramolecular hydrogen bond. This in turn gives rise to a more complicated multiplet for the protons attached to the carbon adjacent to the amino group. This intramolecular hydrogen bond was investigated by a deuterium exchange experiment using heteronuclear NMR spectroscopy (1H, 13C, 15 N and 2H). We observed changes in the multiplet structure and chemical shifts providing further evidence that the deuterium replaces the hydrogen in the intramolecular hydrogen bond. A time course study of the D2O exchange confirmed the presence of a strong hydrogen bond. The comparison of the structures obtained by X‐ray crystallography showed a very small difference in planarity between the two‐substituted and four‐substituted amino compounds. In both the cases, the phenyl ring is not absolutely coplanar with the thiazole unit. The existence of this intramolecular hydrogen bond in 2‐(benzo[d]thiazole‐2′‐yl)‐N‐alkylanilines was further confirmed by single crystal X‐ray crystallography. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号