首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
FeIIFeIII2F8(H2O)2 and MnFe2F8(H2O)2, grown by hydrothermal synthesis (P ? 200 MPa, T = 450 or 380°C), crystallize in the monoclinic system with cell dimensions (Å): a = 7.609(5), b = 7.514(6), c = 7.453(4), β = 118.21(3)°; and a = 7.589(6), b = 7.503(8), c = 7.449(5), β = 118.06(3)°, and space group C2m, Z = 2. The structure is related to that of WO3 · 13H2O. It is described in terms of perovskite type layers of Fe3+ octahedra separated by Fe2+ or Mn2+ octahedra, or in terms of shifted hexagonal bronze type layers. Both compounds present a weak ferromagnetism below TN (157 and 156 K, respectively). Mössbauer spectroscopy points to an “idle spin” behavior for FeIIFeIII2F8(H2O)2: only Fe3+ spins order at TN, while the Fe2+ spins remain paramagnetic between 157 and 35 K. Below 35 K, the hyperfine magnetic field at the Fe2+ nuclei is very weak: Hhf = 47 kOe at T = 4.2 K. For MnFe2F8(H2O)2, Mn2+ spin disorder is expected at 4.2 K. This “idle spin” behavior is due to magnetic frustration.  相似文献   

2.
Ammonium tetrametaphosphate-tellurate dihydrate, (NH4)4P4O12 · 2Te(OH)6 · 2H2O, is triclinic with the following unit cell dimensions: a = 11.845(6), b = 8.554(5), c = 7.433(5) Å, α = 66.28(5), β = 95.91(5), γ = 76.00(5)° space group: P1 and Z = 1. The crystal structure has been determined with a final R value of 0.021. As in the previously described phosphate-tellurates, monophosphate-tellurate and trimetaphosphate-tellurates, the phosphoric anion (here the P4O12 ring) is independent of the octahedral Te(OH)6 group. A complete pattern of the hydrogen bonds is given.  相似文献   

3.
Cu4(PO4)2O is a new copper-rich phosphate. The preparation is described. The unit cell is triclinic, P1, with a = 7.528 Å, b = 8.090 Å, c = 6.272 Å; α = 113.68°, β = 81.56°, γ = 105.77°. The structure was solved from 1526 independent reflections using Patterson and Fourier syntheses. The final R value is 0.041 for the 1217 strongest reflections. Copper sites form a three-dimensional framework. The structure consists of homogeneous layers of copper and oxygen atoms parallel to the (012) plane. Phosphorus atoms are inserted between copper and oxygen layers.  相似文献   

4.
Cu4(PO4)2O crystallizes in the space group P1 with a = 7.5393(8) Å, b = 8.1021(9) Å, c = 6.2764(8) Å, α = 113.65(1)°, β = 98.42(1)° and γ = 74.19(1)°. The structure was refined by full-matrix least-squares techniques using automatic diffractometer data to R = 0.046 (Rw = 0.056). Four unique copper atoms are in six, five-, and four-coordinated polyhedra which are linked together to form a three-dimensional network. The structure is best described in terms of a cubic close-packed array of oxygen atoms with one-tenth of the possible anion sites vacant.  相似文献   

5.
The hydrolysis of a complex of diethyl zinc (DEZ) with propylene sulphide (PS) in PS solution has been investigated. Suitable conditions have been found for the quantitative hydrolysis of DEZ with the formation of a catalyst system containing (ZO)n groups and ZnS bonds and effective for initiating the polymerization of PS. This polymerization was investigated and a tentative scheme for polymerization by a coordinate anionic mechanism is suggested. The structure of polypropylene sulphide (PPS) was investigated by high-resolution NMR spectroscopy and X-rays. The Zn(C2H5)2—H2O system prepared in situ is highly selective in the reactions of breaking the α-thioxide ring. Amorphous PS consists entirely of head-to-tail bonded units with equal content of iso- and syndiotactic diads. It was also shown that extremely high values of the molecular mass of PPS, the unusual dependence of [η] on conversion and the instability of polymer solutions are due to the presence of polymer aggregates formed in the polymerization of PS on complex associated active centres with a steric structure. Conditions were found for the stabilization of PS solutions containing zinc and for the purification of the polymer from traces of the catalyst system. It was shown that it is incorrect to use equations available in the literature to calculate Mη for PPS obtained with the DEZ—H2O system from viscometric data without thorough purification of the polymer. Osmometry and light scattering technique were used to estimate true values of the molecular mass of polymer aggregates and of linear PPS.  相似文献   

6.
Tris(ortho-aminobenzoato)aquoyttrium(III), Y(H2NC6H4COO)3 · H2O, crystallizes in the monoclinic space group, C2c, with eight molecules in a unit cell of dimensions: a = 30.89(1) Å, b = 9.09(1) Å, c = 14.85(1) Å, and β = 109.3(1)°. The structure was determined using three-dimensional X-ray diffraction data gathered on multiple-film equi-inclination, integrated Weissenberg, and precession photographs taken about two crystal axes. The structure, excluding the hydrogen atoms, was solved from Patterson and electron density maps and refined by least-squares methods to a final R of 0.081. The coordination about the yttrium atom is sevenfold, best described by a capped trigonal prism. Each ortho-aminobenzoate ligand acts as a bridging bidentate ligand, resulting in six ortho-aminobenzoate residues coupled to each yttrium atom. The water molecule occupies the seventh position. This bonding configuration generates a structure in which each yttrium atom in (100) is attached to two other yttrium atoms via carboxylate bridges to give parallel sets of polymeric chains coincident with (100). It is suggested that this polymeric character accounts for the extreme insolubility of Y(H2NC6H4COO)3 · H2O.  相似文献   

7.
Two vanadyl(IV) monohydrogenphosphate hydrates have been crystallized from aqueous media and their structures determined by single-crystal X-ray diffraction. The first, a tetrahydrate, VO(HPO4) · 4H2O, is triclinic, P1, with a = 6.379(2), b = 8.921(2), c = 13.462(3) Å, α = 79.95(2), β = 76.33(3), γ = 71.03(3)°. Final residuals of R1 = 0.058 and R2 = 0.065 were obtained using 1250 unique data and 140 parameters. The second was found to be the hemihydrate, VO(HPO4) · 0.5H2O, with orthorhombic symmetry, Pmmn. Complete structure solution and refinement using data from a 2.7 × 105 μm3 crystal gave atomic parameters in close agreement with those recently reported in a parallel study (C. C. Torardi and J. C. Calabrese, Inorg. Chem.23, 1308, 1984). Final residuals R1 = 0.041 and R2 = 0.042 were obtained on optimizing the 45 structural variables using 458 observed intensities. The structures of these two hydrates and that of the pyrophosphate, (VO)2P2O7, show a close correspondence. The degree of condensation of the vanadyl octahedra and phosphate tetrahedra, and the amount of water of crystallization in these materials are closely coupled and depend on the formation temperature.  相似文献   

8.
Nickel-ammonium tetrametaphosphate, Ni(NH4)2P4O12 · 7H2O is triclinic with a = 13.841(3); b = 9.621(5); c = 7.482(2)Å; α = 98.05(4); β = 97.25(4); γ = 103.01(4)°; M = 536.59; V = 947.9Å3; Z = 2; Dx = 1.879 g cm?3; μ = 14.524 cm?1, and space group P1. The crystal structure was solved using 1661 independent reflections measured on a single-crystal diffractometer (Mo). The final R value is 0.056. The two crystallographic independent nickel atoms Ni(1) and Ni(2) are octahedrally coordinated: Ni(1) by four oxygen atoms and two water molecules, Ni(2) by six water molecules. Ni(1), closely connected to two P4O12 rings, forms a complex anion [Ni(P4O12)2(H2O)2]6? which is associated to ammonium polyhedra and [Ni(H2O)6]2+ octahedra. Another interesting feature of this atomic arrangement is the presence of a large channel (10 × 4) Å2 parallel to the c axis. The internal surface of this channel is covered by six zeolitic water molecules.  相似文献   

9.
The C1B1 states of H2O and D2O have been observed by means of three photon absorption (four photon ionisation) spectroscopy. Differences between the experimentally observed 3 + 1 multiphoton ionisation spectrum and that predicted by the appropriate asymmetric-top three-photon line-strength theory are attributed to C state predissociation. Two separate predissociation mechanisms have been identified, one (heterogeneous) relying on a-axis parent molecular rotation to couple the bound B1 state to an unbound state of A1 electronic symmetry, the other (homogeneous) involving a second, dissociative excited electronic state of B1 symmetry. Having established the detailed C state predissociation dynamics, two photon absorption spectra of H2O and D2O (CX) can be predicted accurately: studies of individual quantum-state-selected photofragmentation processes from H2O(C) are proposed.  相似文献   

10.
The dianion [RuIr4(CO)15]2- has been obtained by reductive carbonylation of mixtures of Ir4(CO)12 and RuCl3 · χ H2O, and the bis(triphenylphosphine)-iminium salt has been characterized by single-crystal X-ray diffraction techniques. Crystal data: [((C6H5)3P)2N]2[RuIr4(CO)15], space group P1 (Z  2), a  11.425(3), b  14.141(2), c  25.979(5) Å, α  84.55(1), β  83.53(2), γ  80.71(2)°. The mixed-metal cluster has a structure with an elongated trigonal bipyramidal array of metal atoms in which Ru occupies an apical position. The anion is unstable in vacuum or in an N2 atmosphere yielding predominantly another mixed-metal species which is not as yet fully characterized. Upon reexposure to CO, this latter species is converted back to [RuIr4(CO)15]2-, plus additional products.  相似文献   

11.
According to X-ray crystal structure analyses “cis-benzenetrisimine” (2) and “cis-benzenetrioxide” (1) act as tridentate ligands in their 2:1- and 4:1-complexes 7 (Co(C6H9N3)2(NO3)3) and 8 (Ba(C6H6O3)4(ClO4)2), resp. The latter is the rare example of an organic complex with the (approximate) T-symmetry.  相似文献   

12.
This compound is obtained in several ways, at 900°C, from the components of the FePO system when the oxygen pressure is made suitable, or from Fe3(PO4)2 + Fe + Fe2O3 in a sealed tube under vacuum. It crystallizes under these latter conditions with a trace of FeCl2. The cell is monoclinic; a = 6.564(1), b = 11.271(2), c = 9.383(2) Å, β = 103.95 (2)°, with Z = 4, group P21c. The structure is determined thanks to the use of a direct method and Fourier synthesis and is refined to R = 0.033. The PO4 tetrahedra are isolated; the iron fills four crystallographic sites: three are more or less distorted octahedra, the fourth is a trigonal bipyramid. The oxyphosphate character is ascertained by the presence of some oxygen atoms connected to iron only, with, moreover, a low site potential. This compound is paramagnetic above 90°K. Its Mössbauer spectrum exhibits four doublets in good agreement with the structure; in order to identify which one corresponds to the hexahedral site, the phase Fe3Zn(PO4)2O has been prepared, but its Mössbauer spectrum, in spite of the zinc affinity for the V coordination, shows that two sites are modified, which does not allow conclusions to be made.  相似文献   

13.
The crystal structures of the apatites Ba10(PO4)6F2(I), Ba6La2Na2(PO4)6F2(II) and Ba4Nd3Na3(PO4)6F2 (III) have been determined by single-crystal X-ray diffraction. All three compounds crystallize in a hexagonal apatite-like structure. The unit cells and space groups are: I, a = 10.153(2), c = 7.733(1)Å, P63m; a = 9.9392(4), c = 7.4419(5)Å, P6; III, a = 9.786(2), c = 7.281(1)Å, P3. The structures were refined by normal full-matrix crystallographic least squares techniques. The final values of the refinement indicators Rw and R are: I, Rw = 0.026, R = 0.027, 613 observed reflections; II, Rw = 0.081, R = 0.074, 579 observed reflections; III, Rw = 0.062, R = 0.044, 1262 observed reflections.In I, the Ba(1) atoms located in columns on threefold axes, are coordinated to nine oxygen atoms; the Ba(2) sites form triangles about the F site and are coordinated to six oxygen atoms and one fluoride ion. The fluoride ions are statistically displaced ~0.25 Å from the Ba(2) triangles. This displacement of the F ions is analogous to the displacement of OH ion in Ca10(PO4)6(OH)2.The structures of II and III contain disordered cations. In II there is disorder between La and Na in the column cation sites as well as triangle sites. In III, Nd and Na ions are ordered in the column sites, but there is disorder among Ba and the remaining Nd and Na ions in the triangle sites to give an average site population of 23Ba, 16Nd, 16Na. The coordination of the rare earth ions and Na ions in the ordered column sites are nine and six oxygens, respectively, in accord with the greater charge of the rare earth ions as compared with Na. The F ions in both II and III suffer from considerable disorder in position, and their locations are not precisely known.  相似文献   

14.
A new hybrid organic-inorganic three-dimensional compound, [Co4(OH)2(H2O)2](C4H11N2)2[C6H2(CO2)4]2·3H2O 1, has been synthesized via hydrothermal reactions and characterized by single-crystal X-ray diffraction, infrared spectroscopy, thermogravimetric analysis, and magnetic techniques. Compound 1 crystallizes in the monoclinic space group P21/n (no. 14) with a=6.3029(9) Å, b=16.413(2) Å, c=17.139(2) Å, β=98.630(2)°, V=1735.0(4) Å3, Z=2. Compound 1 contains tetranuclear Co4(μ3-OH)2(H2O)2 clusters that are inter-linked by pyromellitate bridging ligands into a three-dimensional structure containing one-dimensional tunnels along the a-axis with water and pendant monoprotonated piperazine molecules in the center. The variable temperature magnetic susceptibility was measured from 2 to 300 K at 5000 Oe showing a predominantly anti-ferromagnetic interaction in 1, and the field dependence of magnetization was measured at 2, 5, 15, and 20 K indicating the competition of magnetic interactions in the tetranuclear centers.  相似文献   

15.
The structure of the dimeric complex [(bipy)Ni(MEA)]2 · H2O (MEA = 2-methylpent-2-enal (α-methyl-β-ethylacrolein)) was determined by X-ray structural analysis (space group P1, a 10.843(4), b 9.650(3), c 17.116(2) Å, Z = 4, R = 0.05). The MEA ligand is not exclusively coordinated through the olefinic group, but there is however, interaction with the C atom of the neighbouring CO group (NiC distances 2.28 and 2.40 Å in both symmetrically independent molecules). The true bonding situation can be described as in between purely olefinic and purely π-allylic. Two molecules of (bipy)Ni(MEA) are connected by a molecule of water, which bonds asymmetrically to the two oxygen atoms of both aldehyde groups. The compound described is apparently the first example of an organonickel compound with bound water. The compound's importance for complex catalysed aldol condensations is discussed.  相似文献   

16.
The rare-earth dicarboxylate hybrid materials [Ce(H2O)]2[O2C(CH2)2CO2]3 ([Ce(Suc)]) and [Sm(H2O)]2[O2C(CH2)2CO2]3·H2O ([Sm(Suc)]) have been hydrothermally synthesized (200°C, 3 days) under autogenus pressure. [Ce(Suc)] is triclinic, a=7.961 (3) Å, b=8.176 (5) Å, c=14.32 (2) Å, α=97.07° (7), β=96.75° (8), γ=103.73° (6), and z=2. The crystal structure of this compound has been determined using 3120 unique single crystal data. The final refinements let the agreement factors R1 and wR2(F2) converge to 0.0138 and 0.0363, respectively. [Ce(Suc)] is built up from infinite chains of edge-sharing nine-fold coordinated cerium atoms running along [100]. These chains are interconnected by the carbon atoms of the succinate anions, leading to a three-dimensional hybrid framework. The cell constants of [Sm(Suc)], isotypic with monoclinic C2/c [Pr(H2O)]2[O2C(CH2)2CO2]3·H2O ([Pr(Suc)]), were refined starting from X-ray powder data: a=20.275 (3) Å, b=7.919 (6) Å, c=14.130 (3) Å, and β=121.45° (1). Despite its lower symmetry, [Ce(Suc)] presents an important structural filiation with [Sm(Suc)]  相似文献   

17.
Crystal structures of Pb(MoO2)2(PO4)2 and Ba(MoO2)2(PO4)2 were determined. Both compounds contain the molybdyl group MoO2. The monoclinic unit-cell parameters are a = 6.353(7), b = 12.289(4), c = 11.800 Å, β = 92°56(6), and Z = 4 for the lead salt and a = 6.383(8), b = 7.142(7), c = 9.953(8) Å, β = 95°46(8), and Z = 2 for the barium salt. P21c is the common space group. The R values are respectively R = 0.027 and R = 0.031 for 1964 and 1714 independent reflections. The frameworks built up by a three-dimensional network of monophosphate PO4 and molybdyl MoO2 groups are similar, characterized mainly by corner-sharing PO4 and MoO6 polyhedra. Two oxygen atoms of each MoO6 group are bonded to the molybdenum atom only as in other molybdyl salts.  相似文献   

18.
A new ruthenium-rhodium mixed-metal cluster HRuRh3(CO)12 and its derivatives HRuRh3(CO)10(PPh3)2 and HRuCo3(CO)10(PPh3)2 have been synthesized and characterized. The following crystal and molecular structures are reported: HRuRh3(CO)12: monoclinic, space group P21/c, a 9.230(4), b 11.790(5), c 17.124(9) Å, β 91.29(4)°, Z = 4; HRuRh3(CO)10(PPh3)2·C6H14: triclinic, space group P1, a 11.777(2), b 14.079(2), c 17.010(2) Å, α 86.99(1), β 76.91(1), γ 72.49(1)°, Z = 2; HRuCo3(CO)10(PPh3)2·CH2Cl2: triclinic, space group P1, a 11.577(7), b 13.729(7), c 16.777(10) Å, α 81.39(4), β 77.84(5), γ 65.56°, Z = 2. The reaction between Rh(CO)4? and (Ru(CO)3Cl2)2 tetrahydrofuran followed by acid treatment yields HRuRh3(CO)12 in high yield. Its structural analysis was complicated by a 80–20% packing disorder. More detailed structural data were obtained from the fully ordered structure of HRuRh3(CO)10(PPh3)2, which is closely related to HRuCo3(CO)10(PPh3)2 and HFeCo3(CO)10(PPh3)2. The phosphines are axially coordinated.  相似文献   

19.
The crystal structure of the double salt CoCl2·MgCl2·8H2O has been determined by the X-ray diffraction method. It crystallizes in the space group with a=6.0976(9), b=6.308(1), c=8.579(3) Å, α=81.99(2)°, β=88.40°, γ=84.61(1)°, Z=1, and R=0.027. The crystal consists of two kinds of well separated octahedra, [CoCl4(H2O)2]2− and [Mg(H2O)6]2+. The former is unique as aquachloro complexes of Co2+. In order to elucidate the reason prepared as such unique complexes in the double salts, formation energies for [MCl4(H2O)2]2− and [M(H2O)6]2+ (M=Co, Mg) have been calculated by using the density functional methods, and it has been revealed that the formation energies of the first coordination sphere for the metal ions and the Cl?H2O hydrogen bond networks around [CoCl4(H2O)2]2− play a decisive role in forming [CoCl4(H2O)2]2− with the regular octahedral geometry in the double salt.  相似文献   

20.
(π-C5H5)2TiCl2 and cobaltous perchlorate react in aqueous solution to give [{(π-C5H5)2Ti(H2O)}2O](ClO4)2 · 2 H2O (I). Compound I crystallizes in the orthorhombic space group Fdd2 with Z 8 and lattice parameters a 28.893(5), b 17.433(4), c 10.312(3) Å. Results of an X-ray analysis of I (R 0.061): the (crystallographic) symmetry of the complex cation is C2-2; Ti exhibits pseudotetrahedral coordination with a water molecule as one of the ligands; Ti—μ-O distance 1.83 Å; Ti—μ-O—Ti angle 176°; the geometry of the (π-C5H5)2Ti unit in I corresponds closely to that in (π-C5H5)2TiCl2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号