首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The elastic field throughout an ellipsoidal inclusion in an indefinitely-extended anisotropic material is investigated when an eigenstrain (a stress-free transformation strain) is periodically distributed throughout the inclusion. This is an extention of the results obtained by J.D. Eshelby (1961) for uniform eigenstrains and by R.J. Asaro and D.M. Barnett (1975) for polynomial eigenstrains. The solution is applied to the evaluation of elastic strain energies of a disc-shaped martensite with alternating twins and of a spherical precipitate with a banded structure. The significant amount of the elastic strain energies explains the necessity of the supercooling of austenite steel for the martensitic transformation to occur.  相似文献   

2.
This paper is concerned with the elastic field generated in two bonded isotropic half-planes containing either a circular or a rectangular inclusion, each having the same elastic properties as those of the surrounding half-plane. The circular inclusion undergoes a transformation which in the absence of the surrounding material would be an arbitrary uniform stress-free strain, while that imposed on the rectangular inclusion corresponds to a pure dilatation.  相似文献   

3.
Let be an ellipsoid in 3 contained in a region . Suppose one body occupies the region – in a certain stress-free reference configuration while a second body, the inclusion, occupies the region in a stress-free reference configuration. Assume the inclusion is free to slip at . Now suppose that by changing some variable such as the temperature, pressure, humidity, etc., we cause the trivial deformation y(x)=x of the inclusion to become unstable relative to some other deformation. For example, the inclusion may be made out of such a material that if it were removed from the body, it would suddenly change shape to another stress-free configuration specified by a deformation y=Fx, F F=C, C being a fixed tensor characteristic of the material, at a certain temperature. However, with an appropriate material model for the surrounding body, we expect it will resist the transformation, and both body and inclusion will end up stressed.In a recent paper, Mura and Furuhashi [1] find the following unexpected result within the context of infinitesimal deformations: certain homogeneous deformations of the ellipsoid which take it to a stress-free configuration also leave the surrounding body stress-free. These are essentially homogeneous, infinitesimal deformations which preserve ellipsoidal holes. In this paper, we find all finite homogeneous deformations and motions which preserve ellipsoidal holes.  相似文献   

4.
We consider the asymptotic behavior of solutions of systems of inviscid or viscous conservation laws in one or several space variables, which are almost periodic in the space variables in a generalized sense introduced by Stepanoff and Wiener, which extends the original one of H. Bohr. We prove that if u(x,t) is such a solution whose inclusion intervals at time t, with respect to ?>0, satisfy l epsiv;(t)/t→0 as t→∞, and such that the scaling sequence u T (x,t)=u(T x,T t) is pre-compact as t→∞ in L loc 1(? d +1 +, then u(x,t) decays to its mean value \(\), which is independent of t, as t→∞. The decay considered here is in L 1 loc of the variable ξ≡x/t, which implies, as we show, that \(\) as t→∞, where M x denotes taking the mean value with respect to x. In many cases we show that, if the initial data are almost periodic in the generalized sense, then so also are the solutions. We also show, in these cases, how to reduce the condition on the growth of the inclusion intervals l ?(t) with t, as t→∞, for fixed ? > 0, to a condition on the growth of l ?(0) with ?, as ?→ 0, which amounts to imposing restrictions only on the initial data. We show with a simple example the existence of almost periodic (non-periodic) functions whose inclusion intervals satisfy any prescribed growth condition as ?→ 0. The applications given here include inviscid and viscous scalar conservation laws in several space variables, some inviscid systems in chromatography and isentropic gas dynamics, as well as many viscous 2 × 2 systems such as those of nonlinear elasticity and Eulerian isentropic gas dynamics, with artificial viscosity, among others. In the case of the inviscid scalar equations and chromatography systems, the class of initial data for which decay results are proved includes, in particular, the L generalized limit periodic functions. Our procedures can be easily adapted to provide similar results for semilinear and kinetic relaxations of systems of conservation laws.  相似文献   

5.
Considering a closed set M of some x-space and a solution x(t), y(t) of a differential system x = X(x, y, t), y = Y(x, y, t), we give sufficient conditions in order that x(t) approaches M. We use several auxiliary functions and employ Salvadori's method of a one parameter family of Liapunov functions. An application is given to the two-body problem in the presence of some friction forces and when the reference frame is non-inertial.  相似文献   

6.
The Stroh formalism is extended to provide a new class of three-dimensional solutions for the generally anisotropic elastic material that have polynomial dependence on x3, but which have quite general form in x1,x2. The solutions are obtained by a sequence of partial integrations with respect to x3, starting from Stroh's two-dimensional solution. At each stage, certain special functions have to be introduced in order to satisfy the equilibrium equation. The method provides a general analytical technique for the solution of the problem of the prismatic bar with tractions or displacements prescribed on its lateral surfaces. It also provides a particularly efficient solution for three-dimensional boundary-value problems for the half-space. The method is illustrated by the example of a half-space loaded by a linearly varying line force.  相似文献   

7.
The transient motion of an anisotropic elastic bimaterial due to a line force or a line dislocation is studied. The bimaterial is assumed to be at rest and stress-free for t < 0. The line source is applied at t = 0 and maintained for t > 0. A formulation which is an extension to Stroh’s formalism for anisotropic elastostatics is employed. The general solution is expressed in terms of the eigenvalues and eigenvectors of a related eigenvalue problem. The method is used to obtain the analytic solutions without the need of performing integral transforms. Numerical examples of the GaAs bimaterial due to a line force or dislocation are presented for illustration.  相似文献   

8.
We establish the existence of Lipschitz stable invariant manifolds for semiflows generated by a delay equation x′ = L(t)x t + f (t, x t , λ), assuming that the linear equation x′ = L(t)x t admits a polynomial dichotomy and that f is a sufficiently small Lipschitz perturbation. Moreover, we show that the stable invariant manifolds are Lipschitz in the parameter λ. We also consider the general case of nonuniform polynomial dichotomies.  相似文献   

9.
The problem of finding the stress field induced in the neighbourhood of two spherical gas bubbles or voids in an anisotropic matrix is formulated in terms of an integral equation for the “transformation stress” in equivalent homogeneous inclusions. An iterative method of solution is outlined, involving the solution of a class of problems for a single spherical inclusion perturbing a polynomial field of stress. Explicit solutions are obtained for polynomials up to second degree. Estimates of the energy of interaction between gas bubbles in α-U and between voids in Mo are deduced as examples, and the results are discussed in relation to earlier calculations and to observations.  相似文献   

10.
When a crack is lodged in an inclusion, both difference between the modulus of the inclusion and matrix material and stress-free transformation strain of the inclusion will cause the near-tip stress intensity factor to be greater (amplification effect) or less (shielding or toughening effect) than that prevailing in a homogeneous material. In this paper, the inclusion may represent a second phase particle in composites and a transformation or microcracked process zone in brittle materials, which may undergo a stress-free transformation strain induced by phase transformation, microcracking, thermal expansion mismatch and so forth. A close form of solution is derived for predicting the toughening (or amplification) effect. The derivation is based on Eshelby equivalent inclusion approach that provides rigorous theoretical basis to unify the modulus and transformation contributions to the near-tip field. As validated by numerical examples, the developed formula has excellent accuracy for different application cases.  相似文献   

11.
In this study, a bilinear cohesive zone model is employed to describe the transformation toughening behavior of a slowly propagating crack along an interface between a shape memory alloy and a linear elastic or elasto-plastic isotropic material. Small scale transformation zones and plane strain conditions are assumed. The crack growth is numerically simulated within a finite element scheme and its transformation toughening is obtained by means of resistance curves. It is found that the choice of the cohesive strength t0 and the stress intensity factor phase angle φ greatly influence the toughening behavior of the bimaterial. The presented methodology is generalized for the case of an interface crack between a fiber reinforced shape memory alloy composite and a linear elastic, isotropic material. The effect of the cohesive strength t0, as well as the fiber volume fraction are examined.  相似文献   

12.
An expression for the yield stress of anisotropic materials is applied to the anisotropic strength of hard rolled copper foils whose crystallographic texture is known. We assume that this crystallographic texture is the only cause of the anisotropic plastic behaviour of the material. The model used for the yield stress is also used to deduce:
  1. Stress-strain relations for isotropic polycrystalline materials;
  2. A formula for the fully plastic strain tensor, applied to anisotropic hard rolled copper foils.
For the anisotropic copper foils considered the calculated curves of the yield stress and of the strain tensor as a function of the angle x between rolling and tensile direction agree qualitatively with the measured values. However, the theory is not complete, since the yield stress and the plastic strain tensor are both a function of a parameter Q, the fraction of the number of available crystallographic slip planes on which the maximum shear stress has reached the critical value τa. We assume that for “fully” plastic deformation a certain critical fraction Q e of the total number of slip planes has to be active. The fraction Q e is called the critical active quantity. With the parameter Q e we adjust the calculated curves to the measured ones. The dependence of Q e on the properties of the material (e.g. the crystallographic texture) is discussed in Appendix I.  相似文献   

13.
An approach is considered to how to allow for the interaction between an ellipsoidal heterogeneity (inclusion) and an elliptic crack in an elastic medium. Using the superposition of perturbed stress states, the boundary conditions are satisfied on the ellipsoidal surface by the method of equivalent inclusion and on the crack surface by the least-squares method. A numerical analysis is carried out. Typical mechanical effects are revealed. In the calculations, the stress state near the ellipsoidal heterogeneity is approximated by a polynomial of the second degree in Cartesian coordinates, whereas the load on the crack surface is simulated by a polynomial of the fourth degree in Cartesian coordinates. In particular cases, the results are in good agreement with the data obtained by other authors  相似文献   

14.
15.
The internal stress field of an inhomogeneous or homogeneous inclusion in an infinite elastic plane under uniform stress-free eigenstrains is studied. The study is restricted to the inclusion shapes defined by the polynomial mapping functions mapping the exterior of the inclusion onto the exterior of a unit circle. The inclusion shapes, giving a polynomial internal stress field, are determined for three types of inclusions, i.e., an inhomogeneous inclusion with an elastic modulus different from the surrounding matrix, an inhomogeneous inclusion with the same shear modulus but a different Poisson’s ratio from the surrounding matrix, and a homogeneous inclusion with the same elastic modulus as the surrounding matrix. Examples are presented, and several specific conclusions are achieved for the relation between the degree of the polynomial internal stress field and the degree of the mapping function defining the inclusion shape.  相似文献   

16.
We investigate the equations of anisotropic incompressible viscous fluids in , rotating around an inhomogeneous vector B(t, x 1, x 2). We prove the global existence of strong solutions in suitable anisotropic Sobolev spaces for small initial data, as well as uniform local existence result with respect to the Rossby number in the same functional spaces under the additional assumption that B = B(tx 1) or B = B(tx 2). We also obtain the propagation of the isotropic Sobolev regularity using a new refined product law.  相似文献   

17.
The influence of compressibility on the rapid pressure–strain rate tensor is investigated using the Green’s function for the wave equation governing pressure fluctuations in compressible homogeneous shear flow. The solution for the Green’s function is obtained as a combination of parabolic cylinder functions; it is oscillatory with monotonically increasing frequency and decreasing amplitude at large times, and anisotropic in wave-vector space. The Green’s function depends explicitly on the turbulent Mach number M t , given by the root mean square turbulent velocity fluctuations divided by the speed of sound, and the gradient Mach number M g , which is the mean shear rate times the transverse integral scale of the turbulence divided by the speed of sound. Assuming a form for the temporal decorrelation of velocity fluctuations brought about by the turbulence, the rapid pressure–strain rate tensor is expressed exactly in terms of the energy (or Reynolds stress) spectrum tensor and the time integral of the Green’s function times a decaying exponential. A model for the energy spectrum tensor linear in Reynolds stress anisotropies and in mean shear is assumed for closure. The expression for the rapid pressure–strain correlation is evaluated using parameters applicable to a mixing layer and a boundary layer. It is found that for the same range of M t there is a large reduction of the pressure–strain correlation in the mixing layer but not in the boundary layer. Implications for compressible turbulence modeling are also explored.   相似文献   

18.
A method for inverting the transforms of the terms in generalized ray series representations for disturbances in layered media is presented. It differs from the Cagniard reduction in that the solution of algebraic equations depending upon position x and time t is not required. This step is, in effect, replaced by contour integration of relatively simple functions. The method is applicable to anisotropic layers but it simplifies when applied to isotropic layers, for which any term in the ray series is represented as a single contour integral, around a fixed contour, of the product of a function that embodies material properties and a simple explicit function of x and t. The ‘material function’ can be tabulated and used repeatedly when the integral is evaluated for a range of values of x and t, so that the procedure is computationally quite efficient. It is illustrated by a computation of Green's function for an isotropic half-space, either free or overlaid by a fluid. Wave-front singularities are obtained explicitly from the representation and are given in an appendix.  相似文献   

19.
Based on mechanics of anisotropic material, the dynamic crack propagation problem of I/II mixed mode crack in an infinite anisotropic body is investigated. Expressions of dynamic stress intensity factors for modes I and II crack are obtained. Components of dynamic stress and dynamic displacements around the crack tip are derived. The strain energy density theory is used to predict the dynamic crack extension angle. The critical strain energy density is determined by the strength parameters of anisotropic materials. The obtained dynamic crack tip fields are unified and applicable to the analysis of the crack tip fields of anisotropic material, orthotropic material and isotropic material under dynamic or static load. The obtained results show Crack propagation characteristics are represented by the mechanical properties of anisotropic material, i.e., crack propagation velocity M and fiber direction α. In particular, the fiber direction α and the crack propagation velocity M give greater influence on the variations of the stress fields and displacement fields. Fracture angle is found to depend not only on the crack propagation but also on the anisotropic character of the material.  相似文献   

20.
The impact by an elastic cylindrical piston on a thin plate-like target resting on a rigid foundation is considered. The relationship between force F acting on the target and displacement x is given by F=kx+q dx/dt provided dx/dt≥0 and 0≤x<d (k, q and d≥0). When x=d locking occurs, and F can assume any value ≥kd without increase in x. The displacement is assumed to be completely irreversible. The motion of the impactor is assumed to be governed by the elementary wave equation and, since the target is thin, wave motion in the target is neglected. The energy WFdx and its components W k=kεx dx (the energy absorbed in a corresponding quasistatic process) and W q=qε(dx/dt)2 dt (the excessive energy because of the rate-dependence) are determined in terms of the impact energy as functions of non-dimensional parameters representing k, q and d. With the aid of diagrams, it is shown under what circumstances locking occurs, and under what circumstances W k or W q, or both, are large.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号