首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies describe derivatization of metal ions followed by analysis using gas chromatography, usually on packed columns. In many of these studies, stable and volatile derivatives were formed using fluorinated β‐diketonate reagents. This paper extends previous work by investigating separations of the derivatives on small‐diameter capillary gas chromatography columns and exploring on‐fiber, solid‐phase microextraction derivatization techniques for beryllium. The β‐diketonate used for these studies was 1,1,1,2,2,6,6,7,7,7‐decafluoro‐3,5‐heptanedione. Derivatization of lanthanides also required addition of a neutral donor, dibutyl sulfoxide, in addition to 1,1,1,2,2,6,6,7,7,7‐decafluoro‐3,5‐heptanedione. Unoptimized separations on a 100‐μm i.d. capillary column proved capable of rapid separations (within 15 min) of lanthanide derivatives that are adjacent to one another in the periodic table. Full‐scan mass spectra were obtained from derivatives containing 5 ng of each lanthanide. Studies also developed a simple on‐fiber solid‐phase microextraction derivatization of beryllium. Beryllium could be analyzed in the presence of other alkali earth elements (Ba(II) and Sr(II)) without interference. Extension of the general approach was demonstrated for several additional elements (i.e. Cu(II), Cr(III), and Ga(III)).  相似文献   

2.
In this work, a facile and environmentally friendly solid‐phase microextraction assay based on on‐fiber derivatization coupled with gas chromatography and mass spectrometry was developed for determining four nonvolatile index biogenic amines (putrescine, cadaverine, histamine, and tyramine) in fish samples. In the assay, the fiber was firstly dipped into a solution with isobutyl chloroformate as derivatization reagent and isooctane as extraction solvent. Thus, a thin organic liquid membrane coating was developed. Then the modified fiber was immersed into sample solution to extract four important bioamines. Afterwards, the fiber was directly inserted into gas chromatography injection port for thermal desorption. 1,7‐Diaminoheptane was employed as internal standard reagent for quantification of the targets. The limits of detection of the method were 2.98–45.3 μg/kg. The proposed method was successfully applied to the detection of bioamines in several fish samples with recoveries ranging 78.9–110%. The organic reagent used for extraction was as few as microliter that can greatly reduce the harm to manipulator and environment. Moreover, the extraction procedures were very simple without concentration and elution procedures, which can greatly simplify the pretreatment process. The assay can be extended to the in situ screening of other pollutant in food safety by changing the derivatization reagent.  相似文献   

3.
A simple and sensitive method was developed for the simultaneous separation and determination of trace earthy-musty compounds including geosmin, 2-methylisoborneol, 2-isobutyl-3-methoxypyrazine, 2-isopropyl-3-methoxypyrazine, 2,3,4-trichloroanisole, 2,4,6-trichloroanisole, and 2,3,6-trichloroanisole in water samples. This method combined headspace solid-phase microextraction (HS-SPME) with gas chromatography-mass spectrometry and used naphthalene-d(8) as internal standard. A divinylbenzene/carboxen/polydimethylsiloxane fiber exposing at 90°C for 30 min provided effective sample enrichment in HS-SPME. These compounds were separated by a DB-1701MS capillary column and detected in selected ion monitoring mode within 12 min. The method showed a good linearity from 1 to 100 ng L(-1) and detection limits within (0.25-0.61 ng L(-1)) for all compounds. Using naphthalene-d(8) as the internal standard, the intra-day relative standard deviation (RSD) was within (2.6-3.4%), while the inter-day RSD was (3.5-4.9%). Good recoveries were obtained for tap water (80.5-90.6%), river water (81.5-92.4%), and lake water (83.5-95.2%) spiked at 10 ng L(-1). Compared with other methods using HS-SPME for determination of odor compounds in water samples, this present method had more analytes, better precision, and recovery. This method was successfully applied for analysis of earthy-musty odors in water samples from different sources.  相似文献   

4.
In this paper, we propose a comparative study to check the matrix effect on the extraction of three chlorophenols, 2,4,6-trichlorophenol (TCP), 2,3,4,6-tetrachlorophenol and pentachlorophenol, direct precursors of 2,4,6-trichloroanisole, in synthetic and commercial wines (white and red wines). A rapid, simple and sensitive methodology based on solid-phase microextraction (SPME) and GC with electron capture detection (GC-ECD) and mass spectrometric detection (GC-MS) was developed and the variables affecting the extraction process (temperature, time and salt content) were examined employing a factorial design at two levels. Since GC-ECD does not allow the clear identification of target analytes in white wine, owing to overlapped interferences, GC-MS/MS was used for subsequent examinations. Calibration curves were constructed in synthetic, white and red wine. Significant differences between the slopes of synthetic and red wine, with the exception of TCP, were observed. Analytical parameters were evaluated and satisfactory results were obtained, showing the usefulness of the headspace SPME (HS-SPME) method for determining chlorophenolic compounds in wines.  相似文献   

5.
Hui Cao  Zuguang Li  Xiaozhen Chen 《中国化学》2011,29(10):2187-2196
The volatile compounds emitted from Mosla chinensis Maxim were analyzed by headspace solid‐phase microextraction (HS‐SPME) and headspace liquid‐phase microextraction (HS‐LPME) combined with gas chromatography‐mass spectrometry (GC‐MS). The main volatiles from Mosla chinensis Maxim were studied in this paper. It can be seen that 61 compounds were separated and identified. Forty‐nine volatile compounds were identified by SPME method, mainly including myrcene, α‐terpinene, p‐cymene, (E)‐ocimene, thymol, thymol acetate and (E)‐β‐farnesene. Forty‐five major volatile compounds were identified by LPME method, including α‐thujene, α‐pinene, camphene, butanoic acid, 2‐methylpropyl ester, myrcene, butanoic acid, butyl ester, α‐terpinene, p‐cymene, (E)‐ocimene, butane, 1,1‐dibutoxy‐, thymol, thymol acetate and (E)‐β‐farnesene. After analyzing the volatile compounds, multiple linear regression (MLR) method was used for building the regression model. Then the quantitative structure‐retention relationship (QSRR) model was validated by predictive‐ability test. The prediction results were in good agreement with the experimental values. The results demonstrated that headspace SPME‐GC‐MS and LPME‐GC‐MS are the simple, rapid and easy sample enrichment technique suitable for analysis of volatile compounds. This investigation provided an effective method for predicting the retention indices of new compounds even in the absence of the standard candidates.  相似文献   

6.
An application of the direct coupling of solid-phase microextraction (SPME) with mass spectrometry (MS), a technique known as fiber introduction mass spectrometry (FIMS), is described to determine organochlorine (OCP) and organophosphorus (OPP) pesticides in herbal infusions of Passiflora L. A new fiber coated with a composite of poly(dimethylsiloxane) and poly(vinyl alcohol) (PDMS/PVA) was used. Sensitive, selective, simple and simultaneous quantification of several OCP and OPP was achieved by monitoring diagnostic fragment ions of m/z 266 (chlorothalonil), m/z 195 (alpha-endosulfan), m/z 278 (fenthion), m/z 263 (methyl parathion) and m/z 173 (malathion). Simple headspace SPME extraction (25 min) and fast FIMS detection (less than 40 s) of OCP and OPP from a highly complex herbal matrix provided good linearity with correlation coefficients of 0.991-0.999 for concentrations ranging from 10 to 140 ng ml(-1) of each compound. Good accuracy (80 to 110%), precision (0.6-14.9%) and low limits of detection (0.3-3.9 ng ml(-1)) were also obtained. Even after 400 desorption cycles inside the ionization source of the mass spectrometer, no visible degradation of the novel PDMS/PVA fiber was detected, confirming its suitability for FIMS. Fast (ca 20 s) pesticide desorption occurs for the PDMS/PVA fiber owing to the small thickness of the film and its reduced water sorption.  相似文献   

7.
黄俊  何进  张吉斌  喻子牛 《色谱》2007,25(3):425-429
采用顶空固相微萃取(HS-SPME)-气相色谱/质谱法(GC/MS)测定了牛粪、猪粪以及鸡粪中的挥发性有机化合物(VOCs)。在优化HS-SPME条件的基础上,通过GC/MS分析,从牛粪中分离鉴定出44种VOCs,从猪粪中分离鉴定出40种VOCs,从鸡粪中分离鉴定出41种VOCs。HS-SPME-GC/MS具有简单、快速、无需有机溶剂等特点,适合于畜禽粪便中挥发性有机化合物的分析与鉴定。同时,该研究揭示了畜禽养殖场臭味物质的来源,为治理其环境污染提供了科学依据。  相似文献   

8.
In this paper, a new version of salting-out homogenous liquid–liquid extraction based on counter current mode combined with dispersive liquid–liquid microextraction has been developed for the extraction and preconcentration of some pesticides from aqueous samples and their determination by gas chromatography–flame ionization detection. In order to perform the method, aqueous solution of the analytes containing acetonitrile and 1,2-dibromoethane is transferred into a narrow bore tube which is filled partially with NaCl. During passing the solution through the tube, fine droplets of the organic phase are produced at the interface of solution and salt which go up through the tube and form a separated layer on the aqueous phase. The collected organic phase is removed and injected into de-ionized water for more enrichment of the analytes. Under the optimum extraction conditions, the method shows broad linear ranges for the target analytes. Enrichment factors and limits of detection for the selected pesticides are obtained in the ranges of 3480–3800 and 0.1–5 μg L−1, respectively. Relative standard deviations are in the range of 2–7% (n = 6, C = 50 or 100 μg L−1, each analyte). Finally, some aqueous samples were successfully analyzed using the developed method.  相似文献   

9.
Methyl tert-butyl ether (MTBE) is commonly used as chemical additive to increase oxygen content and octane rating of reformulated gasoline. Despite its impact on enhancing cleaner combustion of gasoline, MTBE poses a threat to surface and ground water when gasoline is released into the environment. Methods for onsite analysis of MTBE in water samples are also needed. A less common technique for MTBE detection from water is ion mobility spectrometry (IMS). We describe a method for fast sampling and screening of MTBE from water by solid phase microextraction (SPME) and IMS. MTBE is adsorbed from the head space of a sample to the coating of SPME fiber. The interface containing a heated sample chamber, which couples SPME and IMS, was constructed and the SPME fiber was introduced into the sample chamber for thermal desorption and IMS detection of MTBE vapors. The demonstrated SPME-IMS method proved to be a straightforward method for the detection of trace quantities of MTBE from waters including surface and ground water. We determined the relative standard deviation of 8.3% and detection limit of 5 mg L−1 for MTBE. Because of short sampling, desorption, and detection times, the described configuration of combined SPME and IMS is a feasible method for the detection of hazardous substances from environmental matrices.  相似文献   

10.
Within the last decade, liquid-phase microextraction (LPME) and micro-solid phase extraction (μSPE) approaches have emerged as substitutes for conventional sample processing procedures for trace metal assays within the framework of green chemistry. This review surveys the progress of the state of the art in simplification and automation of microextraction approaches by harnessing to the various generations of flow injection (FI) as a front end to atomic absorption spectrometry (AAS), atomic fluorescence spectrometry (AFS) or inductively coupled plasma atomic emission spectrometry or mass spectrometry (ICP-AES/MS). It highlights the evolution of flow injection analysis and related techniques as vehicles for appropriate sample presentation to the detector and expedient on-line matrix separation and pre-concentration of trace levels of metals in troublesome matrices. Rather than being comprehensive this review is aimed at outlining the pros and cons via representative examples of recent attempts in automating green sample preparation procedures in an FI or sequential injection (SI) mode capitalizing on single-drop microextraction, dispersive liquid-phase microextraction and advanced sorptive materials including carbon and metal oxide nanoparticles, ion imprinted polymers, superparamagnetic nanomaterials and biological/biomass sorbents. Current challenges in the field are identified and the synergetic combination of flow analysis, nanotechnology and metal-tagged biomolecule detection is envisaged.  相似文献   

11.
In recent years the number of environmental applications of elemental speciation analysis using inductively coupled plasma mass spectrometry (ICP-MS) as detector has increased significantly. The analytical characteristics, such as extremely low detection limits (LOD) for almost all elements, the wide linear range, the possibility for multi-elemental analysis and the possibility to apply isotope dilution mass spectrometry (IDMS) make ICP-MS an attractive tool for elemental speciation analysis. Two methodological approaches, i.e. the combination of ICP-MS with high performance liquid chromatography (HPLC) and gas chromatography (GC), dominate the field. Besides the investigation of metals and metalloids and their species (e.g. Sn, Hg, As), representing “classic” elements in environmental science, more recently other elements (e.g. P, S, Br, I) amenable to ICP-MS determination were addressed. In addition, the introduction of isotope dilution analysis and the development of isotopically labeled species-specific standards have contributed to the success of ICP-MS in the field. The aim of this review is to summarize these developments and to highlight recent trends in the environmental application of ICP-MS coupled to GC and HPLC.  相似文献   

12.
The control of pesticides in surface, drinking and groundwater is nowadays a real necessity. In the European Community, their concentration must comply with the established parametric and environmental quality standards (EQSs). Regarding the new legislation, this article updates the information concerning the monitoring of pesticides and the technical specifications for their measurement in water samples where ultra-sensitive analytical methods are required. For some compounds, like pesticides, there is still a need to improve the performance of the existing methods. High sensitive techniques like gas chromatography tandem mass spectrometry (GC–MS/MS) and liquid chromatography coupled with mass spectrometry (LC–MS) have been developed. However, for most of the substances present at trace and ultra-trace levels the extraction and preconcentration steps are so far essential for their detection. Advances at a micro scale have been made and different types of microextractions are being developed. Liquid-phase microextraction (LPME) is an example. The study of this technique has increased in the last years and some innovations have been recently reported for pesticides water analysis. This article reviews the new developed LPME-based techniques and compares its performance with the analytical specifications established for pesticides water monitoring. The results show that LPME-based techniques can be a promising tool to improve the nowadays performance of methods used in pesticides water control.  相似文献   

13.
In this review sample preparation strategies used for crude oil digestion in last ten years are discussed focusing on further metals and non-metals determination. One of the main challenges of proposed methods has been to overcome the difficulty to bring crude oil samples into solution, which should be compatible with analytical techniques used for element determination. On this aspect, this review summarizes the sample preparation methods for metals and non metals determination in crude oil including those based on wet digestion, combustion, emulsification, extraction, sample dilution with organic solvents, among others. Conventional methods related to wet digestion with concentrated acids or combustion are also covered, with special emphasis to closed systems. Trends in sample digestion, such as microwave-assisted digestion using diluted acids combined with high-efficiency decomposition systems are discussed. On the other hand, strategies based on sample dilution in organic solvents and procedures recommended for speciation analysis are reported as well as the use of direct analysis in view of the recent importance for crude oil field. A compilation concerning sample preparation for crude oil provided by official methods as well as certified reference materials available for accuracy evaluation is also presented and discussed.  相似文献   

14.
We review recent progress in preconcentration strategies associated to vapor generation techniques coupled to atomic spectrometric (VGT-AS) for specific chemical species detection. This discussion focuses on the central role of different preconcentration approaches, both before and after VG process. The former was based on the classical solid phase and liquid–liquid extraction procedures which, aided by automation and miniaturization strategies, have strengthened the role of VGT-AS in several research fields including environmental, clinical, and others. We then examine some of the new vapor trapping strategies (atom-trapping, hydride trapping, cryotrapping) that entail improvements in selectivity through interference elimination, but also they allow reaching ultra-low detection limits for a large number of chemical species generated in conventional VG systems, including complete separation of several species of the same element. This review covers more than 100 bibliographic references from 2009 up to date, found in SCOPUS database and in individual searches in specific journals. We finally conclude by giving some outlook on future directions of this field.  相似文献   

15.
Selenium is an essential element for the normal cellular function of living organisms. However, selenium is toxic at concentrations of only three to five times higher than the essential concentration. The inorganic forms (mainly selenite and selenate) present in environmental water generally exhibit higher toxicity (up to 40 times) than organic forms. Therefore, the determination of low levels of different inorganic selenium species in water is an analytical challenge. Solid-phase extraction has been used as a separation and/or preconcentration technique prior to the determination of selenium species due to the need for accurate measurements for Se species in water at extremely low levels. The present paper provides a critical review of the published methods for inorganic selenium speciation in water samples using solid phase extraction as a preconcentration procedure. On the basis of more than 75 references, the different speciation strategies used for this task have been highlighted and classified. The solid-phase extraction sorbents and the performance and analytical characteristics of the developed methods for Se speciation are also discussed.  相似文献   

16.
In recent years, knowledge of the different chemical forms of the elements has gained increasing importance. There has been significant progress in methods that hyphenate chromatographic separations with atomic spectrometry. These hyphenated methods can provide the most complete information on the species distribution and even structure. However, they can be lengthy, relatively costly and difficult to bring to the routine. On the other hand, it is important to remember that chromatographic techniques represent only a minor part of the separation procedures available and, in certain cases, the application of basic chemistry to sample treatments can give quantitative information about specific chemical forms. In this sense, non-chromatographic procedures can provide methods that offer sufficient information on the elemental speciation for a series of situations. Moreover, these non-chromatographic strategies can be less time consuming, more cost effective and available, and present competitive limits of detection. Thus, non-chromatographic speciation analysis continues to be a promising research area and has been applied to the development of several methodologies that facilitate this type of analytical approach. In view of their importance, the present work overviews and discusses different non-chromatographic methods as alternatives for the speciation analysis of clinical, environmental and food samples using atomic spectrometry for detection.  相似文献   

17.
Silicones have innumerable applications in many areas of life. Polydimethylsiloxane (PDMS), which belongs to the class of silicones, has been extensively used in the field of analytical chemistry owing to its favourable physicochemical properties. The use of PDMS in analytical chemistry gained importance with its application as a stationary phase in gas chromatographic separations. Since then it has been used in many sample preparation techniques such as solid phase microextraction (SPME), stir bar sorptive extraction (SBSE), thin-film extraction, permeation passive sampling, etc. Further, it is gaining importance in the manufacturing of lab-on-a-chip devices, which have revolutionized bio-analysis. Applications of devices containing PDMS and used in the field of analytical chemistry are reviewed in this paper.  相似文献   

18.
Carbon nanotube (CNT), a well-known carbon-based nanomaterial has drawn much attention in many application fields including chemistry in the last few decades. Many researchers and scientists have shown huge interest to improve the extraction methodologies and adopt their applications in combination with chromatography technique. With respect to this, the exceptional applications of CNTs have been introduced as extraction sorbent due to their excellent inborn physical and chemical properties. In particular, CNTs have consistently been used as adsorbents in various techniques including solid-phase micro-extraction, solid-phase extraction, micro dispersive slid phase extraction, magnetic dispersive solid phase extraction, analytes enrichment, sample fractionation and clean-up as well as support for many derivatization reactions. Many research papers have discussed the successful use of CNTs to overcome the limitations of the extraction techniques due to their excellent sorbent capacity. In addition, considering the clear need to make chromatographic technique more successful, the applications of CNTs have been reported in the literatures in details as stationary and pseudo-stationary phases for the separation and extraction of challenging compounds. Because of the higher thermal and chemical stability, CNTs have been anticipated as stationary phase modifier for chromatographic applications to avoid bleeding of the columns and enable the analysis even at very high temperature (1200 °C). In liquid chromatography CNTs have primarily been used in combination with other packing materials (silica) and sometimes incorporated in a porous polymeric monolith. Therefore, the recent utilizations of CNTs as extraction materials and stationary phases have been illustrated in the current review and a table listing the details applications of CNTs in aforementioned field is provided as well. We believe that the review will help researcher to gain vast knowledge about application of carbon nanotubes in the field of separation chemistry.  相似文献   

19.
20.
Ruiz-Calero V  Galceran MT 《Talanta》2005,66(2):376-410
The aim of this paper is to review recent literature regarding the determination of phosphorus species by ion chromatography (IC), and describe the implementation of new developments in sample treatment and ion chromatography methodology for the analysis of these compounds. Ion-exchange methods using both carbonate/hydrogencarbonate and hydroxide selective columns in combination with self-regenerating membrane and solid-phase-based suppressors enable determination of phosphate down to ppb levels. New technology, particularly on-line electrolytic hydroxide generators and electrolytic self-regenerating suppressor devices, has allowed the use of elution gradients in both carbonate/hydrogencarbonate and hydroxide selective systems, improving sensitivity and reducing total analysis time for samples containing phosphate together with other inorganic anions. In addition to a review of these developments, optimization and application of chromatographic methods using reversed stationary phases and cationic and/or zwitterionic surfactants is also discussed.The objective of most of the IC methods developed for phosphorus species is the determination of phosphate and total phosphorus. Therefore, sample treatment and separation conditions specifically developed for this purpose are also described. In addition, application of IC to the analysis of other inorganic (reduced and condensed) and organic (phytates, alkyl phosphate, and phosphonates) phosphorus species is discussed along with methodology and relevant applications in water analysis and other miscellaneous fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号