首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We perform a spectral analysis of the preconditioned Hermitian/skew‐Hermitian splitting (PHSS) method applied to multilevel block Toeplitz linear systems in which the coefficient matrix Tn(f) is associated with a Lebesgue integrable matrix‐valued function f. When the preconditioner is chosen as a Hermitian positive definite multilevel block Toeplitz matrix Tn(g), the resulting sequence of PHSS iteration matrices Mn belongs to the generalized locally Toeplitz class. In this case, we are able to compute the symbol ?(f,g) describing the asymptotic eigenvalue distribution of Mnwhen n and the matrix size diverges. By minimizing the infinity norm of the spectral radius of the symbol ?(f,g), we are also able to identify effective PHSS preconditioners Tn(g) for the matrix Tn(f). A number of numerical experiments are presented and commented, showing that the theoretical results are confirmed and that the spectral analysis leads to efficient PHSS methods. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
We study the numerical solution of a block system T m,n x=b by preconditioned conjugate gradient methods where T m,n is an m×m block Toeplitz matrix with n×n Toeplitz blocks. These systems occur in a variety of applications, such as two-dimensional image processing and the discretization of two-dimensional partial differential equations. In this paper, we propose new preconditioners for block systems based on circulant preconditioners. From level-1 circulant preconditioner we construct our first preconditioner q 1(T m,n ) which is the sum of a block Toeplitz matrix with Toeplitz blocks and a sparse matrix with Toeplitz blocks. By setting selected entries of the inverse of level-2 circulant preconditioner to zero, we get our preconditioner q 2(T m,n ) which is a (band) block Toeplitz matrix with (band) Toeplitz blocks. Numerical results show that our preconditioners are more efficient than circulant preconditioners.  相似文献   

3.
Block Toeplitz and Hankel matrices arise in many aspects of applications. In this paper, we will research the distributions of eigenvalues for some models and get the semicircle law. Firstly we will give trace formulas of block Toeplitz and Hankel matrix. Then we will prove that the almost sure limit gT(m)\gamma_{T}^{(m)} (gH(m))(\gamma_{H}^{(m)}) of eigenvalue distributions of random block Toeplitz (Hankel) matrices exist and give the moments of the limit distributions where m is the order of the blocks. Then we will prove the existence of almost sure limit of eigenvalue distributions of random block Toeplitz and Hankel band matrices and give the moments of the limit distributions. Finally we will prove that gT(m)\gamma_{T}^{(m)} (gH(m))(\gamma_{H}^{(m)}) converges weakly to the semicircle law as m→∞.  相似文献   

4.
While extreme eigenvalues of large Hermitian Toeplitz matrices have been studied in detail for a long time, much less is known about individual inner eigenvalues. This paper explores the behavior of the jth eigenvalue of an n-by-n banded Hermitian Toeplitz matrix as n goes to infinity and provides asymptotic formulas that are uniform in j for 1 ≤ jn. The real-valued generating function of the matrices is assumed to increase strictly from its minimum to its maximum and then to decrease strictly back from the maximum to the minimum, having nonzero second derivatives at the minimum and the maximum.  相似文献   

5.
We propose an algorithm for solving the inverse eigenvalue problem for real symmetric block Toeplitz matrices with symmetric Toeplitz blocks. It is based upon an algorithm which has been used before by others to solve the inverse eigenvalue problem for general real symmetric matrices and also for Toeplitz matrices. First we expose the structure of the eigenvectors of the so-called generalized centrosymmetric matrices. Then we explore the properties of the eigenvectors to derive an efficient algorithm that is able to deliver a matrix with the required structure and spectrum. We have implemented our ideas in a Matlab code. Numerical results produced with this code are included.  相似文献   

6.
We give general expressions, analyze algebraic properties and derive eigenvalue bounds for a sequence of Toeplitz matrices associated with the sinc discretizations of various orders of differential operators. We demonstrate that these Toeplitz matrices can be satisfactorily preconditioned by certain banded Toeplitz matrices through showing that the spectra of the preconditioned matrices are uniformly bounded. In particular, we also derive eigenvalue bounds for the banded Toeplitz preconditioners. These results are elementary in constructing high-quality structured preconditioners for the systems of linear equations arising from the sinc discretizations of ordinary and partial differential equations, and are useful in analyzing algebraic properties and deriving eigenvalue bounds for the corresponding preconditioned matrices. Numerical examples are given to show effectiveness of the banded Toeplitz preconditioners.  相似文献   

7.
Recent progress in signal processing and estimation has generated considerable interest in the problem of computing the smallest eigenvalue of a symmetric positive‐definite (SPD) Toeplitz matrix. An algorithm for computing upper and lower bounds to the smallest eigenvalue of a SPD Toeplitz matrix has been recently derived (Linear Algebra Appl. 2007; DOI: 10.1016/j.laa.2007.05.008 ). The algorithm relies on the computation of the R factor of the QR factorization of the Toeplitz matrix and the inverse of R. The simultaneous computation of R and R?1 is efficiently accomplished by the generalized Schur algorithm. In this paper, exploiting the properties of the latter algorithm, a numerical method to compute the smallest eigenvalue and the corresponding eigenvector of SPD Toeplitz matrices in an accurate way is proposed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Given an n × n matrix F, we find the nearest symmetric positive semi‐definite Toeplitz matrix T to F. The problem is formulated as a non‐linear minimization problem with positive semi‐definite Toeplitz matrix as constraints. Then a computational framework is given. An algorithm with rapid convergence is obtained by l1 Sequential Quadratic Programming (SQP) method. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper we introduce a new preconditioner for banded Toeplitz matrices, whose inverse is itself a Toeplitz matrix. Given a banded Hermitian positive definite Toeplitz matrixT, we construct a Toepliz matrixM such that the spectrum ofMT is clustered around one; specifically, if the bandwidth ofT is , all but eigenvalues ofMT are exactly one. Thus the preconditioned conjugate gradient method converges in +1 steps which is about half the iterations as required by other preconditioners for Toepliz systems that have been suggested in the literature. This idea has a natural extension to non-banded and non-Hermitian Toeplitz matrices, and to block Toeplitz matrices with Toeplitz blocks which arise in many two dimensional applications in signal processing. Convergence results are given for each scheme, as well as numerical experiments illustrating the good convergence properties of the new preconditioner.Partly supported by a travel fund from the Deutsche Forschungsgemeinschaft.Research supported in part by Oak Ridge Associated Universities grant no. 009707.  相似文献   

10.
We give a necessary and a sufficient condition for the boundedness of the Toeplitz product T F T G* on the vector valued Bergman space La2(\mathbbCn){L_a^2(\mathbb{C}^n)}, where F and G are matrix symbols with scalar valued Bergman space entries. The results generalize those in the scalar valued Bergman space case [13]. We also characterize boundedness and invertibility of Toeplitz products T F T G* in terms of the Berezin transform, generalizing results found by Zheng and Stroethoff for the scalar valued Bergman space [17].  相似文献   

11.
Let A = (aij) be an n × n Toeplitz matrix with bandwidth k + 1, K = r + s, that is, aij = aji, i, J = 1,… ,n, ai = 0 if i > s and if i < -r. We compute p(λ)= det(A - λI), as well as p(λ)/p′(λ), where p′(λ) is the first derivative of p(λ), by using O(k log k log n) arithmetic operations. Moreover, if ai are m × m matrices, so that A is a banded Toeplitz block matrix, then we compute p(λ), as well as p(λ)/p′(λ), by using O(m3k(log2 k + log n) + m2k log k log n) arithmetic operations. The algorithms can be extended to the computation of det(A − λB) and of its first derivative, where both A and B are banded Toeplitz matrices. The algorithms may be used as a basis for iterative solution of the eigenvalue problem for the matrix A and of the generalized eigenvalue problem for A and B.  相似文献   

12.
In this article, we extend the results for Toeplitz matrices obtained by Noschese, Pasquini, and Reichel. We study the distance d, measured in the Frobenius norm, of a real tridiagonal 2‐Toeplitz matrix T to the closure of the set formed by the real irreducible tridiagonal normal matrices. The matrices in , whose distance to T is d, are characterized, and the location of their eigenvalues is shown to be in a region determined by the field of values of the operator associated with T, when T is in a certain class of matrices that contains the Toeplitz matrices. When T has an odd dimension, the eigenvalues of the closest matrices to T in are explicitly described. Finally, a measure of nonnormality of T is studied for a certain class of matrices T. The theoretical results are illustrated with examples. In addition, known results in the literature for the case in which T is a Toeplitz matrix are recovered.  相似文献   

13.
In this paper we consider the spectrum and quasi-eigenvalues of a family of banded Toeplitz matrices and define their extensions to the generalized eigenvalue problem. A diagonal similarity transformation on such matrices that allows a suitable modification of the region containing the quasi-eigenvalues is reported. Two kind of applications have been analyzed: the computation of the eigenvalues and the asymptotic spectra of Toeplitz matrices and the solution of block banded quasi-Toeplitz linear systems that arise after the discretization of an ODE using a boundary value method.  相似文献   

14.
To any complex function there corresponds a Fourier series, which is often associated with a sequence {T n} of Toeplitz n × n matrices. Functions whose Fourier series generate sequences of normal Toeplitz matrices are classified, and a procedure for constructing Fourier series for which the sequence {T n} contains an infinite subsequence of normal matrices is described.  相似文献   

15.
We study the solutions of block Toeplitz systems A mn u = b by the multigrid method (MGM). Here the block Toeplitz matrices A mn are generated by a nonnegative function f (x,y) with zeros. Since the matrices A mn are ill-conditioned, the convergence factor of classical iterative methods will approach 1 as the size of the matrices becomes large. These classical methods, therefore, are not applicable for solving ill-conditioned systems. The MGM is then proposed in this paper. For a class of block Toeplitz matrices, we show that the convergence factor of the two-grid method (TGM) is uniformly bounded below 1 independent of mn and the full MGM has convergence factor depending only on the number of levels. The cost per iteration for the MGM is of O(mn log mn) operations. Numerical results are given to explain the convergence rate.  相似文献   

16.
It is known that for a tridiagonal Toeplitz matrix, having on the main diagonal the constant a0 and on the two first off‐diagonals the constants a1(lower) and a−1(upper), which are all complex values, there exist closed form formulas, giving the eigenvalues of the matrix and a set of associated eigenvectors. For example, for the 1D discrete Laplacian, this triple is (a0,a1,a−1)=(2,−1,−1). In the first part of this article, we consider a tridiagonal Toeplitz matrix of the same form (a0,aω,aω), but where the two off‐diagonals are positioned ω steps from the main diagonal instead of only one. We show that its eigenvalues and eigenvectors can also be identified in closed form and that interesting connections with the standard Toeplitz symbol are identified. Furthermore, as numerical evidences clearly suggest, it turns out that the eigenvalue behavior of a general banded symmetric Toeplitz matrix with real entries can be described qualitatively in terms of the symmetrically sparse tridiagonal case with real a0, aω=aω, ω=2,3,…, and also quantitatively in terms of those having monotone symbols. A discussion on the use of such results and on possible extensions complements the paper.  相似文献   

17.
Square matrices of the form X n T n + f n (T n ?1 )*, where T n is an n × n invertible banded Toeplitz matrix and f n some positive sequence are considered. The norms of their inverses are described asymptotically as their size n increases. Certain finite rank perturbations of these matrices are shown to have no effect on this behaviour.  相似文献   

18.
In this paper, we consider an approximate block diagonalization algorithm of an n×n real Hankel matrix in which the successive transformation matrices are upper triangular Toeplitz matrices, and propose a new fast approach to compute the factorization in O(n 2) operations. This method consists on using the revised Bini method (Lin et al., Theor Comp Sci 315: 511–523, 2004). To motivate our approach, we also propose an approximate factorization variant of the customary fast method based on Schur complementation adapted to the n×n real Hankel matrix. All algorithms have been implemented in Matlab and numerical results are included to illustrate the effectiveness of our approach.  相似文献   

19.
A fast solution algorithm is proposed for solving block banded block Toeplitz systems with non-banded Toeplitz blocks. The algorithm constructs the circulant transformation of a given Toeplitz system and then by means of the Sherman-Morrison-Woodbury formula transforms its inverse to an inverse of the original matrix. The block circulant matrix with Toeplitz blocks is converted to a block diagonal matrix with Toeplitz blocks, and the resulting Toeplitz systems are solved by means of a fast Toeplitz solver.The computational complexity in the case one uses fast Toeplitz solvers is equal to ξ(m,n,k)=O(mn3)+O(k3n3) flops, there are m block rows and m block columns in the matrix, n is the order of blocks, 2k+1 is the bandwidth. The validity of the approach is illustrated by numerical experiments.  相似文献   

20.
A direct algorithm is presented for the solution of linear systems having banded Toeplitz coefficient matrix with unbalanced bandwidths. It is derived from the cyclic reduction algorithm, it makes use of techniques based on the displacement rank and it relies on the Morrison–Sherman–Woodbury formula. The algorithm always equals and sometimes outperforms the already known direct ones in terms of asymptotic computational cost. The case where the coefficient matrix is a block banded block Toeplitz matrix in block Hessenberg form is analyzed as well. The algorithm is numerically stable if applied to M‐matrices that are point diagonally dominant by columns. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号