首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemical shift assignment of seven N‐substituted 6‐(4‐methoxyphenyl)‐7H‐pyrrolo[2, 3‐d]pyrimidin‐4‐amines, six of which are fluorinated, have been performed based on 1H, 13C, 19F, and 2D COSY, HMBC and HSQC experiments. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
1H and 13 C NMR spectral data of 13 new compounds containing a 4‐(dimethylamino)‐ or 4‐(pyrrolidin‐1‐yl)pyridinium moiety linked to the N‐9 or N‐3 nitrogen atom of an adenine moiety were assigned. 1D and 2D NMR experiments (DEPT, HSQC and HMBC) allowed the unequivocal identification of N‐9 and N‐3 isomers. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
We report through‐space (TS) 19F–19F coupling for ortho‐fluoro‐substituted Z ‐azobenzenes. The magnitude of the TS‐coupling constant (TSJFF) ranged from 2.2–5.9 Hz. Using empirical formulas reported in the literature, these coupling constants correspond to non‐bonded F–F distances (dFF) of 3.0–3.5 Å. These non‐bonded distances are significantly smaller than those determined by X‐ray crystallography or density functional theory, which argues that simple models of 19F–19F TS spin–spin coupling solely based dFF are not applicable. 1H, 13C and 19F data are reported for both the E and Z isomers of ten fluorinated azobenzenes. Density functional theory [B3YLP/6‐311++G(d,p)] was used to calculate 19F chemical shifts, and the calculated values deviated 0.3–10.0 ppm compared with experimental values. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
A set of modified HSQC experiments designed for the study of 13C‐enriched small molecules is introduced. It includes an improved sensitivity‐enhanced HSQC experiment eliminating signal artifacts because of high‐order 13C magnetization terms generated at high 13C enrichment. A broadband homonuclear 13C decoupling sequence based on Zangger and Sterk's method simplifies the complex 13C–13C multiplet structure in the F1 dimension of HSQC. When recording spectra at high resolution, the combination with a multiple‐site modulation of the selective pulse outperforms the constant‐time HSQC in terms of sensitivity and reliability. Finally, two pulse sequences reintroducing selected JCC couplings with selective pulses facilitate their assignments and measurements either in the splitting of the resulting doublets or by modulation of the signal amplitude. A sample of uniformly 92% 13C‐enriched cholesterol is used as an example. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
6.
A complete 1H, 19F, and 13C NMR assignment of a homologous series of polyfluorinated acids and alcohols is reported. These assignments were obtained chiefly through single and multiple‐bond 1H–13C and 19F–13C correlation experiments (HSQC, HMBC). 19F NOESY experiments were required for assignment of two compounds with diastereotopic 19F nuclei in the CF2chain of the molecule. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
We report the 1H NMR and 13C NMR chemical shifts and J(H,H), J(H,F) and J(C,F) coupling constants of 13 2,4‐diamino‐10‐methylpyrimido[4,5‐b]‐5‐quinolone derivatives, some of them with moderate activity against Plasmodium falciparum in vitro. They were characterized and assigned on the basis of 1H, 13C and 13C–1H (short‐ and long‐range) correlated spectra. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
Complete assignment of 1H and 13C NMR chemical shifts and J(1H/1H and 1H/19F) coupling constants for 22 1‐phenyl‐1H‐pyrazoles' derivates were performed using the concerted application of 1H 1D and 1H, 13C 2D gs‐HSQC and gs‐HMBC experiments. All 1‐phenyl‐1H‐pyrazoles' derivatives were synthesized as described by Finar and co‐workers. The formylated 1‐phenyl‐1H‐pyrazoles' derivatives were performed under Duff's conditions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
NMR relaxation measurement of perfluorocarbons (PFCs), such as perfluorotributylamine (FTBA), is a convenient method for the determination of oxygen concentrations in tissues and tumors. Previous relaxation studies of FTBA used different 19F NMR assignments causing some confusion. Fluorine‐detected 19F, 13C HMQC and HMBC and selectively 19F‐decoupled 13C NMR provided unequivocal 19F and 13C assignments for FTBA and perfluoropentanoic acid (FPA). Based on those assignments, 13C spin–lattice relaxation time constants (T1) and effective correlation times for FTBA and FPA are reported and discussed. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
A new method utilization of NMR spectra was developed for structural and quantitative analysis of enol forms of acetylacetone and ethyl acetoacetate. Acetylacetone and ethyl acetoacetate were determined by 19F NMR upon derivatisation with р‐fluorobenzoyl chloride. The base‐catalyzed derivatives of acetylacetone and ethyl acetoacetate reaction with р‐fluorobenzoyl chloride were analyzed by 1H and 13C NMR spectroscopies. E and Z configurations of acetylacetone and ethyl acetoacetate were separated and purified by thin layer chromatography. In addition, the ability of 19F NMR for quantitative analysis of acetylacetone by integration of the appropriate signals of the derivatives were tested and compared. The results further testified the enol forms of acetylacetone and ethyl acetoacetate and the feasibility of 19F NMR method. This method can be potentially used to characterize E and Z isomers and quantitatively analyze E/Z ratio of β‐diketone and β‐ketoester homologues. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Complete assignment of the 1H and 19F chemical shifts in 4‐fluoro‐AF4 (1) were based on the nOes seen in its 19F‐1H HOESY spectrum. This allowed for identification of features which can further be applied to the assignment of the regiochemistry of substituted perfluoroparacyclophanes (PCPs) and AF4s: (i) an aromatic fluorine couples with the two fluorines in the closest bridge that are syn to it, with constants of ca. 20 Hz; (ii) an aromatic fluorine couples with the bridge fluorine five bonds away that is anti to it in the same paraphenylene moiety, with a constant of ca. 3.5 Hz; (iii) the geminal coupling of the bridge fluorines is 246 Hz if they have an ortho fluorine and 238 Hz if they do not; (iv) a bridge fluorine couples with those aromatic protons in the same paraphenylene moiety that are four or five bonds away and anti. These features have been used to assign the regiochemistry of the pseudo‐ortho, pseudo‐meta and pseudo‐para‐difluoro AF4s 2–4. It has also been demonstrated that SCS for the bridge fluorines can be used as well for this assignment. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
The 13 C NMR resonances of 19 1‐acyl‐3‐(2‐nitro‐5‐substitutedphenyl)‐4,5‐dihydro‐1H‐pyrazoles, and 19 1‐acyl‐3‐(2‐amino‐5‐substituted)‐4,5‐dihydro‐1H‐pyrazoles, were completely assigned using the concerted application of one‐ and two‐dimensional NMR experiments (DEPT, gs‐HSQC and gs‐HMBC). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Complete assignments of 1H‐ and 13C‐NMR resonances of five methyl tetra‐O‐benzoyl‐D‐pyranosides based on 1H, 13C, 2D DQF–COSY, HMQC, HMBC and HSQC–TOCSY experiments have been performed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
A selection of mono‐ and pseudo ortho di‐substituted octafluoro[2.2]paracyclophane derivatives were analyzed using 19F‐1H HOESY, 1H COSY and 19F COSY techniques. This resulted in the unambiguous assignment of the 19F and 1H NMR resonances, and also revealed interesting solvent effects and noteworthy coupling patterns for various JHH, JHF, and JFF interactions, including observable through bond 7JFF and 8JFF couplings. For the four mono‐substituted derivatives, the assignments were achieved through the combination of 19F‐1H HOESY, 1H COSY and 19F COSY techniques. The C2 symmetry of the six pseudo ortho di‐substituted derivatives that were examined produced simplified spectra, and careful inspection of the characteristic 1H coupling patterns led to the assignment of 1H signals. Therefore only 19F‐1H HOESY experiments were required to complete the assignments for those molecules. Refinements and alternative strategies for previous protocols are presented for the molecules that were less responsive to nuclear Overhauser effect (nOe) experiments. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
The 1H and 13C shifts of six N‐benzyl‐(piperidin or pyrrolidin)‐purines were fully assigned by a combination of HSQC and HMBC experiments. The 1H,1H coupling constants were also determined. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
X‐ray data show that the diethyl 6,13‐bis[(Z)‐cyanomethylidene]‐5,5,14,14‐tetramethyl‐4,15‐dioxa‐7,12‐diazapentacyclo[9.5.2.02,10.03,7.012,16]octadeca‐8,17‐diene‐10,17‐dicarboxylate is formed as the ZZ isomer and diastereomer with the (1R*,2R*,3R*,10S*,11R*,12R*,16R*) configuration. The 1H, 13C, and 15N NMR data exhibit that on standing in chloroform‐d solution, there is a spontaneous isomerization of this compound resulting in a thermodynamically stable mixture of the ZZ, ZE, EE, and EZ isomers with the same backbone. Using the 2D [1H–1H] COSY, [1H–13C] HSQC, and [1H–13C, 1H–15N] HMBC NMR techniques and quantum chemical calculations makes it possible a complete assignment of signals in the 1H, 13C, and 15N NMR spectra of each of the isomers. Such isomerization does not occur for similar compounds with the more bulky substituents at the 1,3‐oxazolidine rings. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
Solid state NMR spectroscopy is inherently sensitive to chemical structure and composition and thus makes an ideal method to probe the heterogeneity of multicomponent polymers. Specifically, NMR spin diffusion experiments can be used to extract reliable information about spatial domain sizes on multiple length scales, provided that magnetization selection of one domain can be achieved. In this paper, we demonstrate the preferential filtering of protons in fluorinated domains during NMR spin diffusion experiments using 1H‐19F heteronuclear dipolar dephasing based on rotational echo double resonance (REDOR) MAS NMR techniques. Three pulse sequence variations are demonstrated based on the different nuclei detected: direct 1H detection, plus both 1H?13C cross polarization and 1H?19F cross polarization detection schemes. This 1H‐19F REDOR‐filtered spin diffusion method was used to measure fluorinated domain sizes for a complex polymer blend. The efficacy of the REDOR‐based spin filter does not rely on spin relaxation behavior or chemical shift differences and thus is applicable for performing NMR spin diffusion experiments in samples where traditional magnetization filters may prove unsuccessful. This REDOR‐filtered NMR spin diffusion method can also be extended to other samples where a heteronuclear spin pair exists that is unique to the domain of interest.  相似文献   

18.
1H and 13C NMR spectroscopic data of 20 new non‐symmetrical compounds were assigned by a combination of 1D and 2D NMR experiments (DEPT, HSQC, and HMBC). These compounds contain a 4‐(N,N‐dimethylamino)‐ or 4‐(pyrrolidin‐1‐yl)pyridinium moiety and a 3‐nitro‐, 3‐amino‐, or 3‐hydroxyphenyl ring, linked by p‐xylene, 4,4′‐dimethylbiphenyl, 1,2‐bis(p‐tolyl)ethane, or 1,4‐bis(p‐tolyl)butane. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Two novel oligosaccharides, mono‐ and difructosyllactosucrose {[O‐β‐D ‐fructofuranosyl‐(2 → 1)]n‐β‐D ‐fructofuranosyl‐O‐[β‐D ‐galactopyranosyl‐(1 → 4)]‐α‐D ‐glucopyranoside, n = 1 and 2} were synthesized using 1F‐fructosyltransferase purified form roots of asparagus (Asparagus officinalis L.). Their 1H and 13C NMR spectra were assigned using several NMR techniques. The spectral analysis was started from two anomeric methines of aldose units, galactose and glucose, since they showed separate characteristic signals in their 1H and 13C NMR spectra. After assignments of all the 1H and 13C signals of two units of aldose, they were discriminated as galactose and glucose using proton–proton coupling constants. The HMBC spectrum revealed the galactose residue attached to C‐4 of glucose, fructose residue attached to the C‐1 of glucose, and further fructosyl fructose linkage extended from the glucosyl fructose residues. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
The conformation of [bis‐(N,N′‐difluoroboryl)]‐3,3′‐diethyl‐4,4′,8,8′,9,9′,10,10′‐octamethyl‐2,2′‐bidipyrrin (1) in solution was studied by analyzing the 13C? 19F and 19F? 19F through‐space spin–spin couplings. The 1H and 13C NMR spectra were assigned on the basis of nuclear Overhauser effect spectroscopy (NOESY), heteronuclear single‐quantum correlation (HSQC), and heteronuclear multiple‐bond correlation (HMBC) experiments. The 19F spectrum of 1 was compared with that of 2‐ethyl‐1,3,5,6,7‐pentamethyl‐4,4‐difluoro‐4‐bor‐3a,4a‐diaza‐s‐indacen (2). The 19F? 19F through‐space spin? spin coupling in 1 was thus assigned and the coupling constant was obtained by simulating the coupling patterns. The obtained conformation of 1 was compared with those of the known complexes [bis‐(N,N′‐difluoroboryl)]‐3,3′,8,8′,9,9′‐hexaethyl‐4,4′,10,10′‐tetramethyl‐6,6′‐(4‐methylphenyl)‐2,2′‐bidipyrrin (3)and [bis‐(N,N′‐difluoroboryl)]‐9,9′‐diethyl‐4,4′,8,8′,10,10′‐hexamethyl‐3,3′‐bis(methoxycarbonylethyl)‐2,2′‐bidipyrrin (4). The conformational dynamics of 1, 3, and 4 was surveyed by observing the temperature dependence of the through‐space coupling constants between 253 and 333 K. The 13C? 19F and 19F? 19F through‐space spin–spin couplings thus confirm similar conformations of different BisBODIPYs in solution in contrast to earlier findings in the solid state. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号