首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A glass system of the composition xWO3+(100−x)Pb3O4, with x=5, 10, 20 and 30 mol.% was prepared. The optical absorption, ac and dc conductivities are the subject of the present work. The optical absorption indicates that the electronic transition is indirect and is associated with phonon assisted transition. The exponential dependence of the absorption coefficient as a function of the incident photon energy suggests that the Urbach rule is obeyed, and indicates the formation of a band tail. On the other hand, ac conductivity measurements are performed in the frequency range 0.1–100 kHz, and in the temperature range 300–600 K. The results of the electrical conductivity are discussed on the basis of electronic glass conduction models. Correlated narrow-band limit for random sites and single polaron hopping model are found to describe the experimental results effectively. The dielectric constant was correlated to the optical band gap and a satisfactory relation was found. It was also possible to calculate the thermochromic properties from independent ac and dc measurements, and it was possible to evaluate the optical gap at 0 K by extrapolation.  相似文献   

2.
The Ag2O–TiO2–SiO2 glasses were prepared by Ag+/Na+ ion-exchange method from Na2O–TiO2–SiO2 glasses at 380–450 °C below their glass transition temperatures (Tg), and their electrical conductivities were investigated as functions of TiO2 content and the ion-exchange ratio (Ag/(Ag+Na)). In a series of glasses 20R2xTiO2·(80−x)SiO2 with x=10, 20, 30 and 40 in mol%, the electrical conductivities at 200 °C of the fully ion-exchanged glasses of R=Ag were in the order of 10−5 or 10−4 S cm−1 and were 1 or 2 orders of magnitude higher than those of the initial glasses of R=Na. The glass of x=30 exhibited the highest increase of conductivity from 3.8×10−7 to 1.3×10−4 S cm−1 at 200 °C by Ag+/Na+ ion exchange among them. When the ion-exchange ratio was changed in 20R2O·30TiO2·50SiO2 system, the electrical conductivity at 200 °C exhibited a minimum value of 7.6×10−8 S cm−1 around Ag/(Ag+Na)=0.3 and increased steeply in the region of Ag/(Ag+Na)=0.5–1.0. When the ion-exchange temperature was changed from 450 to 400 °C, the conductivity of the ion-exchanged glass of x=30 decreased. The infrared spectroscopy measurement revealed that the ion-exchange temperature of 450 °C induced a structural change in the glass of x=30. The Tg of the fully ion-exchanged glass of x=30 was 498 °C. It was suggested that the incorporated silver ions changed the average coordination number of titanium ions to form higher ion-conducting pathway and resulted in high conductivity in the titanosilicate glasses.  相似文献   

3.
B Singh  P S Tarsikka  L Singh 《Pramana》2002,59(4):653-661
Studies of dielectric relaxation and ac conductivity have been made on three samples of sodium tungsten phosphate glasses over a temperature range of 77–420 K. Complex relative permitivity data have been analyzed using dielectric modulus approach. Conductivity relaxation frequency increases with the increase of temperature. Activation energy for conductivity relaxation has also been evaluated. Measured ac conductivity (σm(ω)) has been found to be higher than σdc at low temperatures whereas at high temperature σm(ω) becomes equal to σdc at all frequencies. The ac conductivity obeys the relation σac(ω)=Aω S over a considerable range of low temperatures. Values of exponent S are nearly equal to unity at about 78 K and the values decrease non-linearly with the increase of temperature. Values of the number density of states at Fermi level (N(E F)) have been evaluated at 80 K assuming values of electron wave function decay constant α to be 0.5 (Å)?1. Values of N(E F) have the order 1020 which are well within the range suggested for localized states. Present values of N(E F) are smaller than those for tungsten phosphate glasses.  相似文献   

4.
The possibility to operate the two-photon absorption (TPA) of newly synthesized GeSe2–Ga2S3–PbI2 glasses using the CO laser beam (λ=5.5 μm) as a photoinducing one has been demonstrated. As the fundamental laser beam we have used the illumination of 10.6 μm passively modulated 0.5 ns CO2 laser with a rate repetition of about 10 Hz. We have established that the maximal photoinduced TPA is observed for the 8% doped samples (up to 14 cm/GW), which is achieved at a pump CO laser pump power density equal to about 0.6 GW/cm2. The undoped PbI2 samples show the TPA maximum at a pump power density of about 0.2 cm/GW. The minimal TPA values were observed for the samples with 5% of PbI2. The obtained results show that these materials can be used as effective optically operated optical limiters.  相似文献   

5.
The electrical conductivity and the conductivity relaxation of (55−x)ZrF4–15BaF2xYF3–30LiF glasses were studied in the temperature range from 300 K to just below the glass transition temperature and in the frequency range from 10 Hz to 2 MHz. No large changes in the conductivity were observed with the substitution of Zr4+ by the Y3+ ions. The activation energy remained almost constant up to 20 mol.% YF3 content and increased for higher YF3 content in the glass compositions. The frequency dependent conductivity was analyzed in terms of modulus formalism. The distribution parameter for the conductivity relaxation times remained almost unchanged with the substitution of YF3 with an increase for 40 mol.% YF3 content. The distribution of relaxation times of the present glasses was much broader than that for the YF3-free zirconium fluoride glasses. The glass decoupling index decreased and the modulus relaxation rate increased with the increase of YF3 content in the glass compositions with an anomaly for the composition having 20 mol.% YF3 content.  相似文献   

6.
Ag+/Na+ ion-exchanged aluminosilicate glasses with uniform concentration profiles were prepared, and their electrical conductivities were investigated as functions of the ion-exchange ratio and the initial glass compositions. In the case of the ion-exchanged glasses of x20Ag2O–(1−x)20Na2O–10Al2O3–70SiO2 in mol%, the conductivity, σ, and its activation energy, Eσ, showed a minimum and a maximum at the same ion-exchange ratio x=0.3, respectively, and the mixed mobile ion effect (MMIE) was observed. The fully ion-exchanged sample attained σ=3.5×10−5 S/cm at 200 °C, which was 1.5 orders of magnitude larger than that of initial glass. In the case of x25Ag2O–(1−x)25Na2O–25Al2O3–50SiO2, the mixed mobile ion effect was also observed at x=0.5. The maximum conductivity of 2×10−4 S/cm at 200 °C was obtained in the fully ion-exchanged glass sample.

The electric relaxation analysis was also conducted on both systems, and Kohlrausch–Williams–Watts (KWW) fractional exponent β was obtained as a function of x. The decrease of β was observed near x≈0.3 in the former system, while that of the later system was independent of the ion-exchange ratio. Based on the structural analysis results, the observed behaviors were investigated from the point of view of the occupation of Ag+ ions on the non-bridging oxygen-site (NBO-site) and the charge compensation-site (CC-site) of AlO4 tetrahedral unit.  相似文献   


7.
The longitudinal ultrasonic attenuation measurements have been made using pulse echo method at fundamental frequencies of 2, 4, 6 and 8 MHz in 20WO3–(80−x) TeO2xPbO ternary tellurite glasses (x=10, 12.5, 15, 17.5 and 20 mol%) in the temperature range 160–280 K. The results showed the presence of a broad peak which shifts to higher temperature with increasing frequency. The ultrasonic attenuation peaks suggest that the experimental behavior is controlled by thermally activated structural relaxations. The internal friction, acoustic activation energy, deformation potential, relaxation strength, number of loss centers and density of state have been calculated both as a function of temperature and PbO content. The acoustic activation energy was found to decrease from 0.156 to 0.135 eV with the increase of PbO content. The results showed that both the number of loss centers and their activation energy decrease with the atomic ring size. An increase in the density of state is observed with addition of PbO content at the same frequency in the whole range of temperature which is associated with structural units formed when PbO is added.  相似文献   

8.
Infra-red luminescence (at wavelengths about 1600 and 2500 nm) from Er3+ ions embedded in PbO–Bi2O3–Ga2O3–BaO glass hosts is reported for room and helium liquid temperatures. The substantial influence of energy transfer processes between the host and Er3+ ions is shown experimentally through the dependences of photoluminescence on light polarization and excitation wavelength. Only the application of the polarized pumping YAG–Nd laser beam (λ=1060 nm) stimulates substantial luminescence with quantum efficiency up to 24%. The role of phonon-relaxation subsystem in the observed luminescence is discussed.  相似文献   

9.
Glasses having compositions xLi2O∙(85 − x)Bi2O3∙15SiO2 (x = 35, 40, and 45 mol%) were prepared by normal melt quenching technique. Electrical relaxation and conductivity in these glasses were studied using impedance spectroscopy in the frequency range from 20 Hz to 1 MHz and in the temperature range from 453 to 603 K. The ac and dc conductivities, activation energy of the dc conductivity and relaxation frequency were extracted from the impedance spectra. The dc conductivity increases with increase in Li2O content providing modified glass structure and large number of mobile lithium ions. Similar values of activation energy for dc conduction and for conductivity relaxation time indicate that the ions overcome the same energy barrier while conducting and relaxing. The non-exponential character of relaxation processes increases with decrease in stretched exponential parameter ‘β’ as the composition parameter ‘x’ increases. The observed conductivity spectra follow a power law with exponent ‘s’ which increases regularly with frequency and approaches unity at higher frequencies. Nearly constant losses (NCL) characterize this linearly dependent region of the conductivity spectra. A deviation from the ‘master curve’ for various isotherms of conductivity spectra was also observed in the high-frequency region and at low temperatures, which supports the existence of different dynamic processes like NCL in addition to the ion hopping processes in the investigated glass system.  相似文献   

10.
The Ho3+/Yb3+ and Tm3+/Yb3+ doped P2O5-MgO2-Sb2O3-MnO2-AgO glasses were prepared by high temperature melting method. Under a 975 nm laser diode (LD) excitation, the single red and single blue upconversion (UC) emissions were observed in Ho3+/Yb3+ and Tm3+/Yb3+ doped samples, respectively. By studying the spontaneous radiative and multiphonon relaxation probabilities, we find that the multiphonon relaxation probability of 5I6 (Ho3+) state is very large (1.39 × 106 s− 1), which is helpful to the population of 5I7 state. The multiphonon relaxation probability of 3H5 and 3F2,3 (Tm3+) is also very large, which results in lots of population in 3F4 and 3H4 states. The results are that the red UC emission of Ho3+ and the blue UC emission of Tm3+ are stronger.  相似文献   

11.
Samples of general formula CsAg2−xMxI3, x=0–0.4 and M=Cu and Tl, have been prepared and studied by powder X-ray diffraction, DSC and electrical conductivity measurements. X-ray diffractograms and DSC curves showed the possibility of stabilizing the high-temperature -phase at lower temperatures in Tl-substituted samples, while such results were not obtained in Cu-substituted samples. Ionic conductivity measurements showed two regions corresponding to the low- and high-temperature phases. The transition temperature between the two phases was found to remain unchanged with the addition of Cu+ and decreased gradually with increasing Tl+. The ionic conductivity decreased in Cu-substituted samples and enhanced with the incorporation of Tl+ ion in the lattice of CsAg2I3. Dielectric constant was found to show behaviour similar to that of the ionic conductivity, and this is an evidence of the predominant effect of ion hopping on this property.  相似文献   

12.
The intrinsic luminescence of glasses of the CaO–Ga2O3–GeO2 system has been investigated. High chemical purity and optical quality glasses, both undoped and doped with transition and rare-earth ions with different compositions, were obtained by high-temperature synthesis. The influences of the basic glass composition, impurities (Cr3+, Mn2+, Eu2+, Nd3+, Ho3+, Er3+, and Ce3+) and different kinds of excitation, on the intrinsic luminescence of the CaO–Ga2O3–GeO2 glasses were investigated. The nature and possible mechanisms of the intrinsic luminescence in glasses of this system are discussed. The proposed models of intrinsic luminescence are supported by electron spin resonance spectroscopy.  相似文献   

13.
I. Kosacki  H. L. Tuller   《Solid State Ionics》1995,80(3-4):223-229
The results of electrical conductivity measurements on SrCe0.95Yb0.05O3 under controlled oxygen partial pressure and temperature are presented. A defect model consistent with experimental results is proposed which provides for PO2−1/4 dependent n-type, Po2-independent oxygen ion and PO2+1/4 dependent p-type conductivity components. The band gap, reduction, oxidation and ion-migration energies are determined from an analysis of the data in terms of the proposed defect model. These results suggest that some earlier data interpreted in terms of protonic conduction may require re-evaluation.  相似文献   

14.
We have studied the nonlinear conductivity of two‐dimensional Coulomb glasses. We have used a Monte Carlo algorithm to simulate the dynamic of the system under an applied electric field E. We have compared results for two different models: a regular square lattice with only diagonal disorder and a random array of sites with diagonal and off‐diagonal disorder. We have found that for moderate fields the logarithm of the conductivity is proportional to , reproducing experimental results. We have also found that in the nonlinear regime the site occupancy in the Coulomb gap follows a Fermi‐Dirac distribution with an effective temperature Teff higher than the phonon bath temperature T.  相似文献   

15.
稀土离子掺杂的AlF3基氟化物玻璃   总被引:3,自引:0,他引:3       下载免费PDF全文
在800和970nm LD激发下,分别研究了Er3+单掺和Yb3+,Tm3+共掺的AlF3基(AYF,AZF)玻璃中上转换发光、能量传递和浓度猝灭.在Er3+掺杂的AlF3基玻璃,随着Er3+掺杂量的增加,红光与绿光上转换发光强度比(Ired/Igreen)增加,这被认为与两个Er3+离子 关键词: 稀土离子 氟铝酸盐玻璃  相似文献   

16.
Glasses in the binary system xAg2P2O6 − (1 − x)Ag2Te2O5 have been prepared for 0 x 1. For each composition only one glass transition temperature is observed in the temperature range of 180–220 °C. All glasses appear homogeneous considering their optical and electrical properties. Nevertheless, in SEM observations, some glass compositions appear to be heterogeneous after decoration following short nitric acid etching. For each composition, conductivity data obtained in the temperature range of 25–200 °C using impedance techniques obey an Arrhenius relationship with a composition independent pre-exponential term. Variation of the conductivity activation energy with x induces correlative variations of isothermal conductivity curves leading to an increase of the ionic conductivity of about one order of magnitude compared with linearity at 25 °C. This behaviour is discussed with respect to the thermodynamic properties of the glassy solutions.  相似文献   

17.
A new layered perovskite compound, Ag2La2Ti3O10, was synthesized by an ion-exchange reaction of M2La2Ti3O10 (M = Na,K) with a AgNO3 molten salt. The crystal structure and the ionic conductivity of the ion-exchanged compound were investigated. The ionic conductivities attributed to the interlayer silver ions were observed at high temperatures. The ionic conductivity of Ag2La2Ti3O10 was much higher than that of Na2La2Ti3O10, while the interlayer sodium ions in Na2La2Ti3O10 and silver ions in Ag2La2Ti3O10 have almost the same rock-salt type coordination. The higher conductivity of Ag2La2Ti3O10 is probably due to the higher polarizability of silver ions.  相似文献   

18.
Electrical conductivity and dielectric relaxation studies of silver ion-conducting glasses have been prepared using xAg2SO4-15Ag2O-(90-x)(90P2O5-10MoO3) glass system over a temperature range of 298–353 K and frequencies of 10 Hz to 10 MHz. DC conductivities exhibit Arrhenius behavior over the entire temperature range with a single activation barrier. The ac conductivity behavior of these glasses has been analyzed using single power law; conductivity increases linearly in logarithmic scale with Ag2SO4 concentration. The power law exponent (s) decreases, while stretched exponent (β) is insensitive to increase of temperature. Scaling behavior has also been carried out using the reduced plots of conductivity and frequency, which suggest that ion transport mechanism remains unaffected at all temperatures and compositions.  相似文献   

19.
A solid polymer electrolyte (SPE) is synthesized by solution casting technique. The SPE uses poly(ethylene oxide) PEO as a host matrix doped with lithium triflate (LiCF3SO3), ethylene carbonate (EC) as plasticizer and nano alumina (Al2O3) as filler. The polymer electrolytes are characterized by Impedance Spectroscopy (IS) to determine the composition of the additive which gives the highest conductivity for each system. At room temperature, the highest conductivity is obtained for the composition PEO-LiCF3SO3-EC-15%Al2O3 with a value of 5.07 10− 4 S/cm. The ionic conductivity of the polymer electrolytes increases with temperature and obeys the Arrhenius law. X-ray diffraction (XRD) and differential scanning calorimetry (DSC) studies indicate that the conductivity increase is due to an increase in amorphous content which enhances the segmental flexibility of polymeric chains and the disordered structure of the electrolyte. Fourier transform infrared spectroscopy (FTIR) spectra show the occurrence of complexation and interaction among the components. Scanning electron microscopy (SEM) images show the changes morphology of solid polymer electrolyte.  相似文献   

20.
The room and high temperature structures of Li2UI6 have been determined using the neutron powder diffraction. It has been shown that at 300 K, the compound crystallizes in trigonal unit cell with a = B = 7.3927(8), c = 13.826(2) Å with space group P-31c. Above the phase transition occuring at 775 K, the structure transforms into monoclinic C2/m space group with unit cell constants: a = 7.733(5), B = 13.234(7), C = 7.645(4) Å, β = 110.59(3) deg. The measurement of electrical conductivity as a function of temperature has been performed. Based on the crystallographic data, a discussion of the shape of observed conductivity curve has been carried out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号