首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The emergence of drug‐resistant strains of Mycobacterium tuberculosis has intensified efforts to identify new lead tuberculostatics. Our earlier studies concluded that the planarity of a molecule correlates well with its tuberculostatic activity. According to our hypothesis, only derivatives whose molecules are capable of adopting a planar conformation may show tuberculostatic activity. The structures of three new potentially tuberculostatic compounds, namely N′‐[bis(methylsulfanyl)methylidene]‐N‐methyl‐4‐nitrobenzohydrazide (denoted G1), C11H13N3O3S2, N′‐[bis(benzylsulfanyl)methylidene]‐N‐methyl‐4‐nitrobenzohydrazide (denoted G2), C23H21N3O3S2, and N′‐[(benzylsulfanyl)(methylsulfanyl)methylidene]‐4‐nitrobenzohydrazide (denoted G3), C16H15N3O3S2, were determined by X‐ray diffraction. The significant distortion from planarity caused by the methyl substituent at the N atom of the hydrazide group or the NO2 substituent in the aromatic ring leads to the loss of tuberculostatic activity for G1, G2 and G4 {systematic name: N′‐[bis(methylsulfanyl)methylidene]‐2‐nitrobenzohydrazide}. A similar effect is observed when there are large substituents at the S atoms (G2 and G3).  相似文献   

2.
Dimethyl (3,4‐dichlorobenzoyl)carbonohydrazonodithioate, C10H10Cl2N2OS2, (D1), dibenzyl (3,4‐dichlorobenzoyl)carbonohydrazonodithioate, C22H18Cl2N2OS2, (D2), dimethyl (3,4‐dichlorobenzoyl)‐1‐methylcarbonohydrazonodithioate, C11H12Cl2N2OS2, (D3), 3,4‐dichloro‐N′‐(1,3‐dithiolan‐2‐ylidene)‐N‐methylbenzohydrazide, C11H10Cl2N2OS2, (D4), were synthesized as potential tuberculostatics. Compound (D1) (with two molecules in the asymmetric unit) was the only one showing tuberculostatic activity of the same range as the common drugs isoniazid and pyrazinamide. The molecular structures of the studied compounds depend on the substitution at the N atom adjacent to the carbonyl group. In the case of the unsubstituted derivatives (D1) and (D2), their central frames are generally planar with a twist of the 3,4‐dichlorophenyl ring by 30–40°. Until now, coplanarity of the aromatic ring with the (methylene)carbonohydrazone fragment has been considered a prerequisite for tuberculostatic activity. The N‐methylated derivatives (D3) and (D4) show an additional twist along the N—C(=O) bond by 20–30° due to the spatial repulsion introduced by the methyl substituent.  相似文献   

3.
Methyl 2‐(pyrazin‐2‐ylcarbonyl)hydrazinecarbodithioate, C7H8N4OS2, (E1), N′‐[bis(methylsulfanyl)methylidene]pyrazine‐2‐carbohydrazide, C8H10N4OS2, (F1), N′‐[bis(methylsulfanyl)methylidene]‐6‐methoxypyrazine‐2‐carbohydrazide, C9H12N4O2S2, (F2), and methyl 1‐methyl‐2‐(pyrazin‐2‐ylcarbonyl)hydrazinecarbodithioate, C8H10N4OS2, (G1), can be considered as derivatives of classical (thio)amide‐type tuberculostatics, and all are moderately active against Mycobacterium tuberculosis. This study was undertaken in a search for relationships between activity and specific intramolecular interactions, especially conjugations and hydrogen‐bond contacts, and the molecular structures were compared with respective amine analogues, also active against the pathogen. Despite the differences between the amine and carbonyl groups with opposite functions in the hydrogen bond, the two types of structure show a surprisingly similar planar geometry, mostly due to the conjugations aided by the bifurcated intramolecular hydrogen‐bond contact between the N—H group of the central hydrazide group as donor and a pyrazine N atom and an S atom of the dithio function as acceptors. Planarity was suggested to be crucial for the tuberculostatic activity of these compounds. The N‐methylated derivative (G1) showed a significant twist at the N—N bond [torsion angle = −121.9 (3)°] due to the methyl substitution, which precludes an intramolecular N—H...S contact and the planarity of the whole molecule. Nonetheless, the compound shows moderate tuberculostatic activity.  相似文献   

4.
The search for new tuberculostatics is important considering the occurrence of drug‐resistant strains of Mycobacterium tuberculosis . Three polymorphs of N ′‐(1,3‐dithiolan‐2‐ylidene)‐4‐nitrobenzohydrazide (a potentially tuberculostatic agent), C10H9N3O3S2, denoted (I1), (I2) and (I3), and the monohydrate of this compound, C10H9N3O3S2·H2O, (I4), have been characterized by single‐crystal X‐ray diffraction. The conformations of the molecules in all these structures are very similar. Structures (I1), (I2) and (I3) provide an example of packing polymorphism resulting from different intermolecular interactions.  相似文献   

5.
The title compounds, C13H15N3O5S and C11H10N2O4S2, respectively, both contain a phenyl­sulfonyl group connected, through a methyl­ene bridge, to either a substituted nitro­imidazole or nitro‐1,3‐thia­zole ring. In the imidazole‐containing mol­ecule, the nitro and sulfonyl groups are trans relative to the sulfonyl–methyl bond, while in the thia­zole‐containing mol­ecule, these substituents are cis. The stabilizing interactions within the crystals are also different between the two compounds.  相似文献   

6.
The 1,5‐benzodiazepine ring system exhibits a puckered boat‐like conformation for all four title compounds [4‐(2‐hydroxyphenyl)‐2‐phenyl‐2,3‐dihydro‐1H‐1,5‐benzodiazepine, C21H18N2O, (I), 2‐(2,3‐dimethoxyphenyl)‐4‐(2‐hydroxyphenyl)‐2,3‐dihydro‐1H‐1,5‐benzodiazepine, C23H22N2O3, (II), 2‐(3,4‐dimethoxyphenyl)‐4‐(2‐hydroxyphenyl)‐2,3‐dihydro‐1H‐1,5‐benzodiazepine, C23H22N2O3, (III), and 2‐(2,5‐dimethoxyphenyl)‐4‐(2‐hydroxyphenyl)‐2,3‐dihydro‐1H‐1,5‐benzodiazepine, C23H22N2O3, (IV)]. The stereochemical correlation of the two C6 aromatic groups with respect to the benzodiazepine ring system is pseudo‐equatorial–equatorial for compounds (I) (the phenyl group), (II) (the 2,3‐dimethoxyphenyl group) and (III) (the 3,4‐dimethoxyphenyl group), while for (IV) (the 2,5‐dimethoxyphenyl group) the system is pseudo‐axial–equatorial. An intramolecular hydrogen bond between the hydroxyl OH group and a benzodiazepine N atom is present for all four compounds and defines a six‐membered ring, whose geometry is constant across the series. Although the molecular structures are similar, the supramolecular packing is different; compounds (I) and (IV) form chains, while (II) forms dimeric units and (III) displays a layered structure. The packing seems to depend on at least two factors: (i) the nature of the atoms defining the hydrogen bond and (ii) the number of intermolecular interactions of the types O—H...O, N—H...O, N—H...π(arene) or C—H...π(arene).  相似文献   

7.
Methyl 2‐(3,4‐dichlorobenzoyl)‐1‐methylhydrazinecarbodithioate, C10H10Cl2N2OS2, (F1), butyl 2‐(3,4‐dichlorobenzoyl)‐1‐methylhydrazinecarbodithioate, C13H16Cl2N2OS2, (F2), and 3,4‐dichloro‐N‐(2‐sulfanylidene‐1,3‐thiazinan‐3‐yl)benzamide, C11H10Cl2N2OS2, (F3), were studied by X‐ray diffraction to test our hypothesis that planarity of aryloylhydrazinedithiocarbazic acid esters is a prerequisite for tuberculostatic activity. All compounds examined in this study are inactive and nonplanar due to twists along two specific bonds in the central frame of the molecules. The significant twist at the N—N bond, with an C—N—N—C(S) torsion angle of about 85°, results from repulsion caused by a methyl substituent at the N′ atom of the hydrazide group. The other twist is that within the benzoyl group at the C(O)—Ph bond, i.e. the N—C(=O)—C(phenyl)—C torsion angle: the values found in the studied structures (25–30°) are in agreement with those observed in other compounds containing a similar fragment. As some nonplanar benzoyl derivatives are active, it seems that planarity of the hydrazinedithioate fragment is more important for tuberculostatic activity than planarity of the aryloyl group.  相似文献   

8.
Aminobenzylnaphthols are a class of compounds containing a large aromatic molecular surface which makes them suitable candidates to study the role of C—H…π interactions. We have investigated the effect of methyl or methoxy substituents on the assembling of aromatic units by preparing and determining the crystal structures of (S,S)‐1‐{(4‐methylphenyl)[(1‐phenylethyl)amino]methyl}naphthalen‐2‐ol, C26H25NO, and (S,S)‐1‐{(4‐methoxyphenyl)[(1‐phenylethyl)amino]methyl}naphthalen‐2‐ol, C26H25NO2. The methyl group influenced the overall crystal packing even if the H atoms of the methyl group did not participate directly either in hydrogen bonding or C—H…π interactions. The introduction of the methoxy moiety caused the formation of new hydrogen bonds, in which the O atom of the methoxy group was directly involved. Moreover, the methoxy group promoted the formation of an interesting C—H…π interaction which altered the orientation of an aromatic unit.  相似文献   

9.
Four crystal structures of 3‐cyano‐6‐hydroxy‐4‐methyl‐2‐pyridone (CMP), viz. the dimethyl sulfoxide monosolvate, C7H6N2O2·C2H6OS, (1), the N,N‐dimethylacetamide monosolvate, C7H6N2O2·C4H9NO, (2), a cocrystal with 2‐amino‐4‐dimethylamino‐6‐methylpyrimidine (as the salt 2‐amino‐4‐dimethylamino‐6‐methylpyrimidin‐1‐ium 5‐cyano‐4‐methyl‐6‐oxo‐1,6‐dihydropyridin‐2‐olate), C7H13N4+·C7H5N2O2, (3), and a cocrystal with N,N‐dimethylacetamide and 4,6‐diamino‐2‐dimethylamino‐1,3,5‐triazine [as the solvated salt 2,6‐diamino‐4‐dimethylamino‐1,3,5‐triazin‐1‐ium 5‐cyano‐4‐methyl‐6‐oxo‐1,6‐dihydropyridin‐2‐olate–N,N‐dimethylacetamide (1/1)], C5H11N6+·C7H5N2O2·C4H9NO, (4), are reported. Solvates (1) and (2) both contain the hydroxy group in a para position with respect to the cyano group of CMP, acting as a hydrogen‐bond donor and leading to rather similar packing motifs. In cocrystals (3) and (4), hydrolysis of the solvent molecules occurs and an in situ nucleophilic aromatic substitution of a Cl atom with a dimethylamino group has taken place. Within all four structures, an R22(8) N—H...O hydrogen‐bonding pattern is observed, connecting the CMP molecules, but the pattern differs depending on which O atom participates in the motif, either the ortho or para O atom with respect to the cyano group. Solvents and coformers are attached to these arrangements via single‐point O—H...O interactions in (1) and (2) or by additional R44(16) hydrogen‐bonding patterns in (3) and (4). Since the in situ nucleophilic aromatic substitution of the coformers occurs, the possible Watson–Crick C–G base‐pair‐like arrangement is inhibited, yet the cyano group of the CMP molecules participates in hydrogen bonds with their coformers, influencing the crystal packing to form chains.  相似文献   

10.
The molecules of both methyl 4‐[2‐(4‐chlorobenzoyl)hydrazinyl]‐3‐nitrobenzoate, C15H12ClN3O5, (I), and methyl 4‐[2‐(2‐fluorobenzoyl)hydrazinyl]‐3‐nitrobenzoate, C15H12FN3O5, (II), contain an intramolecular N—H...O hydrogen bond, and both show electronic polarization in the nitrated aryl ring. In both compounds, molecules are linked by a combination of N—H...O and C—H...O hydrogen bonds to form sheets, which are built from R43(18) rings in (I) and from R44(28) rings in (II). In each of methyl 3‐phenyl‐1,2,4‐benzotriazine‐6‐carboxylate, C15H11N3O2, (III), and methyl 3‐(4‐methylphenyl)‐1,2,4‐benzotriazine‐6‐carboxylate, C16H13N3O2, (IV), the benzotriazine unit shows naphthalene‐type delocalization. There are no hydrogen bonds in the structures of compounds (III) and (IV), but in both compounds, the molecules are linked into chains by π–π stacking interactions involving the benzotriazine units. The mechanism of chain formation is the same in both (III) and (IV), and the different orientations of the two chains can be related to the approximate relationship between the unit‐cell metrics for (III) and (IV).  相似文献   

11.
The title diastereoisomers, methyl 5‐(S)‐[2‐(S)‐methoxy­carbonyl)‐2,3,4,5‐tetra­hydro­pyrrol‐1‐yl­carbonyl]‐1‐(4‐methyl­phenyl)‐4,5‐di­hydro­pyrazole‐3‐carboxyl­ate and methyl 5‐(S)‐[2‐(R)‐methoxycarbonyl)‐2,3,4,5‐tetrahydropyrrol‐1‐ylcarbonyl]‐1‐(4‐methyl­phenyl)‐4,5‐di­hydro­pyrazole‐3‐carboxylate, both C19H23N3O5, have been studied in two crystalline forms. The first form, methyl 5‐(S)‐[2‐(S)‐methoxy­carbonyl)‐2,3,4,5‐tetrahydropyrrol‐1‐ylcarbonyl]‐1‐(4‐methylphenyl)‐4,5‐di­hydro­pyrazole‐3‐carboxyl­ate–methyl 5‐(S)‐[2‐(R)‐methoxy­carbonyl)‐2,3,4,5‐tetra­hydro­pyrrol‐1‐yl­carbonyl]‐1‐(4‐methylphenyl)‐4,5‐dihydropyrazole‐3‐carboxylate (1/1), 2(S),5(S)‐C19H23N3O5·2(R),5(S)‐C19H23N3O5, contains both S,S and S,R isomers, while the second, methyl 5‐(S)‐[2‐(S)‐methoxycarbonyl)‐2,3,4,5‐tetrahydro­pyrrol‐1‐ylcarbonyl]‐1‐(4‐methyl­phenyl)‐4,5‐di­hydro­pyrazole‐3‐carboxyl­ate, 2(S),5(S)‐C19H23N3O5, is the pure S,S isomer. The S,S isomers in the two structures show very similar geometries, the maximum difference being about 15° on one torsion angle. The differences between the S,S and S,R isomers, apart from those due to the inversion of one chiral centre, are more remarkable, and are partially due to a possible rotational disorder of the 2‐­(methoxycarbonyl)tetrahydropyrrole group.  相似文献   

12.
Four compounds showing moderate antituberculostatic activity have been studied to test the hypothesis that the planarity of the 2‐[amino(pyrazin‐2‐yl)methylidene]dithiocarbazate fragment is crucial for activity. N′‐Anilinopyrazine‐2‐carboximidamide, C11H11N5, D1, and diethyl 2,2′‐[({[amino(pyrazin‐2‐yl)methylidene]hydrazinylidene}methylidene)bis(sulfanediyl)]diacetate, C14H19N5O4S2, B1, maintain planarity due to conjugation and attractive intramolecular hydrogen‐bond contacts, while methyl 3‐[amino(pyrazin‐2‐yl)methylidene]‐2‐methyldithiocarbazate, C8H11N5S2, C1, and benzyl 3‐[amino(pyrazin‐2‐yl)methylidene]‐2‐methyldithiocarbazate, C14H15N5S2, C2, are not planar, due to methylation at one of the N atoms of the central N—N bond. The resulting twists of the two molecular halves (parts) of C1 and C2 are indicated by torsion angles of 116.5 (2) and −135.9 (2)°, respectively, compared with values of about 180° in the crystal structures of nonsubstituted compounds. As the methylated derivatives show similar activity against Mycobacterium tuberculosis to that of the nonsubstituted derivatives, maintaining planarity does not seem to be a prerequisite for activity.  相似文献   

13.
(Cyclo­hexyl­methyl­oxy­methyl)(1H‐imidazol‐4‐io­methyl)‐(S)‐ammonium dichloride, C13H25N3O+·2Cl?, and (4‐bromo­benzyl)(1H‐imidazol‐4‐io­methyl)‐(S)‐ammonium dichloride, C13H18BrN3O+·2Cl?, are model compounds with different biological activities for evaluation of the hist­amine H3‐receptor activation mechanism. Both title compounds occur in almost similar extended conformations.  相似文献   

14.
In both the title structures, O‐ethyl N‐(2,3,4,6‐tetra‐O‐acetyl‐β‐d ‐gluco­pyran­osyl)­thio­carbam­ate, C17H25NO10S, and O‐methyl N‐(2,3,4,6‐tetra‐O‐acetyl‐β‐d ‐gluco­pyran­osyl)­thiocar­bam­ate, C16H23NO10S, the hexo­pyran­osyl ring adopts the 4C1 conformation. All the ring substituents are in equatorial positions. The acetoxy­methyl group is in a gauchegauche conformation. The S atom is in a synperi­planar conformation, while the C—N—C—O linkage is antiperiplanar. N—H?O intermolecular hydrogen bonds link the mol­ecules into infinite chains and these are connected by C—H?O interactions.  相似文献   

15.
The molecules of racemic 3‐benzoylmethyl‐3‐hydroxyindolin‐2‐one, C16H13NO3, (I), are linked by a combination of N—H...O and O—H...O hydrogen bonds into a chain of centrosymmetric edge‐fused R22(10) and R44(12) rings. Five monosubstituted analogues of (I), namely racemic 3‐hydroxy‐3‐[(4‐methylbenzoyl)methyl]indolin‐2‐one, C17H15NO3, (II), racemic 3‐[(4‐fluorobenzoyl)methyl]‐3‐hydroxyindolin‐2‐one, C16H12FNO3, (III), racemic 3‐[(4‐chlorobenzoyl)methyl]‐3‐hydroxyindolin‐2‐one, C16H12ClNO3, (IV), racemic 3‐[(4‐bromobenzoyl)methyl]‐3‐hydroxyindolin‐2‐one, C16H12BrNO3, (V), and racemic 3‐hydroxy‐3‐[(4‐nitrobenzoyl)methyl]indolin‐2‐one, C16H12N2O5, (VI), are isomorphous in space group P. In each of compounds (II)–(VI), a combination of N—H...O and O—H...O hydrogen bonds generates a chain of centrosymmetric edge‐fused R22(8) and R22(10) rings, and these chains are linked into sheets by an aromatic π–π stacking interaction. No two of the structures of (II)–(VI) exhibit the same combination of weak hydrogen bonds of C—H...O and C—H...π(arene) types. The molecules of racemic 3‐hydroxy‐3‐(2‐thienylcarbonylmethyl)indolin‐2‐one, C14H11NO3S, (VII), form hydrogen‐bonded chains very similar to those in (II)–(VI), but here the sheet formation depends upon a weak π–π stacking interaction between thienyl rings. Comparisons are drawn between the crystal structures of compounds (I)–(VII) and those of some recently reported analogues having no aromatic group in the side chain.  相似文献   

16.
The syntheses, X‐ray structural investigations and calculations of the conformational preferences of the carbonyl substituent with respect to the pyran ring have been carried out for the two title compounds, viz. C15H14N2O2, (II), and C20H16N2O2·C2H3N, (III), respectively. In both mol­ecules, the heterocyclic ring adopts a flattened boat conformation. In (II), the carbonyl group and a double bond of the heterocyclic ring are syn, but in (III) they are anti. The carbonyl group forms a short contact with a methyl group H atom in (II). The dihedral angles between the pseudo‐axial phenyl substituent and the flat part of the pyran ring are 92.7 (1) and 93.2 (1)° in (II) and (III), respectively. In the crystal structure of (II), inter­molecular N—H⋯N and N—H⋯O hydrogen bonds link the mol­ecules into a sheet along the (103) plane, while in (III), they link the mol­ecules into ribbons along the a axis.  相似文献   

17.
Four structures of oxoindolyl α‐hydroxy‐β‐amino acid derivatives, namely, methyl 2‐{3‐[(tert‐butoxycarbonyl)amino]‐1‐methyl‐2‐oxoindolin‐3‐yl}‐2‐methoxy‐2‐phenylacetate, C24H28N2O6, (I), methyl 2‐{3‐[(tert‐butoxycarbonyl)amino]‐1‐methyl‐2‐oxoindolin‐3‐yl}‐2‐ethoxy‐2‐phenylacetate, C25H30N2O6, (II), methyl 2‐{3‐[(tert‐butoxycarbonyl)amino]‐1‐methyl‐2‐oxoindolin‐3‐yl}‐2‐[(4‐methoxybenzyl)oxy]‐2‐phenylacetate, C31H34N2O7, (III), and methyl 2‐[(anthracen‐9‐yl)methoxy]‐2‐{3‐[(tert‐butoxycarbonyl)amino]‐1‐methyl‐2‐oxoindolin‐3‐yl}‐2‐phenylacetate, C38H36N2O6, (IV), have been determined. The diastereoselectivity of the chemical reaction involving α‐diazoesters and isatin imines in the presence of benzyl alcohol is confirmed through the relative configuration of the two stereogenic centres. In esters (I) and (III), the amide group adopts an anti conformation, whereas the conformation is syn in esters (II) and (IV). Nevertheless, the amide group forms intramolecular N—H...O hydrogen bonds with the ester and ether O atoms in all four structures. The ether‐linked substituents are in the extended conformation in all four structures. Ester (II) is dominated by intermolecular N—H...O hydrogen‐bond interactions. In contrast, the remaining three structures are sustained by C—H...O hydrogen‐bond interactions.  相似文献   

18.
The slow evaporation of analytical NMR samples resulted in the formation of crystals of (E)‐2‐({[4‐(dimethylamino)phenyl]imino}methyl)‐4‐nitrophenol, C15H15N3O3, (I), and (E)‐2‐({[4‐(diethylamino)phenyl]imino}methyl)‐4‐nitrophenol, C17H19N3O3, (II). Despite the small structural difference between these two N‐salicylideneaniline derivatives, they show different space groups and diverse molecular packing. The molecules of both compounds are close to being planar due to an intramolecular O—H...N hydrogen bond. The 4‐alkylamino‐substituted benzene ring is inclined at an angle of 13.44 (19)° in (I) and 2.57 (8)° in (II) with respect to the 4‐nitro‐substituted phenol ring. Only very weak intermolecular π–π stacking and C—H...O interactions were found in these structures.  相似文献   

19.
In order to examine the preferred hydrogen‐bonding pattern of various uracil derivatives, namely 5‐(hydroxymethyl)uracil, 5‐carboxyuracil and 5‐carboxy‐2‐thiouracil, and for a conformational study, crystallization experiments yielded eight different structures: 5‐(hydroxymethyl)uracil, C5H6N2O3, (I), 5‐carboxyuracil–N,N‐dimethylformamide (1/1), C5H4N2O4·C3H7NO, (II), 5‐carboxyuracil–dimethyl sulfoxide (1/1), C5H4N2O4·C2H6OS, (III), 5‐carboxyuracil–N,N‐dimethylacetamide (1/1), C5H4N2O4·C4H9NO, (IV), 5‐carboxy‐2‐thiouracil–N,N‐dimethylformamide (1/1), C5H4N2O3S·C3H7NO, (V), 5‐carboxy‐2‐thiouracil–dimethyl sulfoxide (1/1), C5H4N2O3S·C2H6OS, (VI), 5‐carboxy‐2‐thiouracil–1,4‐dioxane (2/3), 2C5H4N2O3S·3C6H12O3, (VII), and 5‐carboxy‐2‐thiouracil, C10H8N4O6S2, (VIII). While the six solvated structures, i.e. (II)–(VII), contain intramolecular S(6) O—H…O hydrogen‐bond motifs between the carboxy and carbonyl groups, the usually favoured R22(8) pattern between two carboxy groups is formed in the solvent‐free structure, i.e. (VIII). Further R22(8) hydrogen‐bond motifs involving either two N—H…O or two N—H…S hydrogen bonds were observed in three crystal structures, namely (I), (IV) and (VIII). In all eight structures, the residue at the ring 5‐position shows a coplanar arrangement with respect to the pyrimidine ring which is in agreement with a search of the Cambridge Structural Database for six‐membered cyclic compounds containing a carboxy group. The search confirmed that coplanarity between the carboxy group and the cyclic residue is strongly favoured.  相似文献   

20.
The structures of three compounds, namely 7‐methoxy‐2‐[3‐(tri­fluoro­methyl)­phenyl]‐9H‐indeno­[1,2‐c]­pyridazin‐9‐one, C19H11F3N2O2, (Id), 6‐methoxy‐2‐[3‐(tri­fluoro­methyl)­phenyl]‐9H‐indeno­[1,2‐c]­pyridazin‐9‐one, C19H11F3N2O2, (IId), and 2‐methyl‐6‐(4,4,4‐tri­fluoro­butoxy)‐9H‐indeno­[1,2‐c]­pyridazin‐9‐one, C16H13F3N2O2, (IIf), which are potent reversible type‐B mono­amine oxidase (MAO‐B) inhibitors, are presented and discussed. Compounds (Id) and (IId) crystallize in a nearly planar conformation. The crystal structures are stabilized by weak C—H⋯O hydrogen bonds. The packing is dominated by π–π stacking interactions between the heterocyclic central moieties of centrosymmetrically related mol­ecules. In compound (IIf), the tri­fluoro­ethyl termination is almost perpendicular to the plane of the ring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号