首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The steric and electronic requirements have been investigated for the synthesis of 2,3‐dihydro‐4(1H)‐quinolinones by the tandem Michael‐SNAr reaction. Substrates bearing a single methyl group at the β‐enone carbon gave excellent yields of the title compounds from both the E and Z isomers with X═H or NO2. Substrates with β,β‐dimethyl substitution at the Michael terminus gave low yields of heterocyclic products in molecules having monoactivated SNAr aromatic acceptor rings (X═H) and very good yields for diactivated systems (X═NO2). For these hindered substrates, success in the final cyclization hinges on the ability of the aromatic acceptor to capture the pendant nitrogen nucleophile of the initial Michael adduct before this intermediate can revert to starting materials.  相似文献   

2.
A facile, efficient, and novel approach to access 2‐substituted 2,3‐dihydro‐4(1H)‐azuleno[2,1‐d]pyrimidinones was developed by condensation of 2‐amino‐1‐carbamoyl‐3‐phenylazulene with ary1 aldehydes or ketones in ionic liquids by catalyzed p‐toluenesulfonic acid.  相似文献   

3.
4.
The central six‐membered ring in the title compound, C16H16O3, is almost planar (and almost coplanar with the aromatic ring), despite one of its C atoms being formally sp3 hybridized. The planarity is a consequence of the C atom at the centre of the spiro­cyclic system also being part of the three‐membered epoxide ring. The mol­ecules are linked by π–­π and C—H?π interactions.  相似文献   

5.
A versatile synthetic method for preparing 4‐hydroxyquinolone and 2‐substituted quinolone compounds from simple benzoic acid derivatives was demonstrated. The synthetic strategies involve the use of well known ethyl acetoacetate synthesis, malonic ester synthesis and reductive cyclization. The key intermediates were keto esters 4a‐e , which could be transformed to 4‐hydroxyquinolones 5a,b or 2‐substituted quinolone ethyl esters 6a‐c depending on the reaction conditions. 4‐Hydroxyquinolone analogues were prepared and investigated for N‐methyl‐D‐aspartate (NMDA) activity in vitro. Among these derivatives, 6,7‐difluoro‐3‐nitro‐4‐hydroxyquinolin‐2(1H)‐one ( 9 ) exhibited moderate activity.  相似文献   

6.
7.
8.
A series of nine TADDOLs (=α,α,α′,α′‐tetraaryl‐1,3‐dioxolane‐4,5‐dimethanols) 1a – 1i , have been tested as proton sources for the enantioselective protonation of the Li‐enolate of 2‐methyl‐1‐tetralone (=3,4‐dihydro‐2‐methylnaphthalen‐1(2H)‐one). The enolate was generated directly from the ketone (with LiN(i‐Pr)2 (LDA)/MeLi) or from the enol acetate (with 2 MeLi) or from the silyl enol ether (with MeLi) in CH2Cl2 or Et2O as the solvent (Scheme). The Li‐enolate (associated with LiBr/LDA, or LiBr alone) was combined with 1.5 – 3.0 equiv. of the TADDOL at −78° by addition of the latter or by inverse addition. 2‐Methyl‐1‐tetralone of (S)‐configuration is formed (≤80% yield) with up to 99.5% selectivity if and only if (R,R)‐TADDOLs ( 1d , e , g ) with naphthalen‐1‐yl groups on the diarylmethanol unit are employed (Table). The reactions were carried out on the 0.1‐ to 1.0‐mM scale. The selectivity is subject to non‐linear effects (NLE) when an enantiomerically enriched TADDOL 1d is used (Fig. 1). The performance of TADDOLs bearing naphthalen‐1‐yl groups is discussed in terms of their peculiar structures (Fig. 2).  相似文献   

9.
A general and convenient palladium‐catalyzed carbonylation procedure for the synthesis of benzofuran‐2(3 H)‐ones from phenols and aldehydes has been developed. With formic acid as the CO source, a variety of benzofuran‐2(3 H)‐ones were obtained in moderate to good yields.  相似文献   

10.
The synthesis of ketanserin ( 5 ) and its hydrochloride salt ( 5.HCl ) using respectively equimolar amounts of 3‐(2‐chloroethyl)‐2,4‐(1H,3H)‐quinazolinedione ( 2 ) with 4‐(parafluorobenzoyl)piperidine ( 3 ) and dihydro‐5H‐oxazole(2,3‐b)quinazolin‐5‐one ( 1 ) with hydrochloride salt of 4‐(parafluorobenzoyl)piperidine ( 3.HCl ) is reinvestigated. The one‐pot reaction of ethyl‐2‐aminobenzoate with ethyl chloroformate and ethanol amine has afforded 3‐(2‐chloroethyl)‐2,4‐(1H,3H)‐quinazolinedione ( 2 ) (86%) that was then refluxed with 4‐(parafluorobenzoyl)piperidine ( 3 ) in ethyl methyl ketone in the presence of sodium carbonate to obtain free base of ketanserin (87%). In another attempt, a very pure hydrochloride salt of ketanserin ( 5.HCl ) was synthesized using equimolar amounts of dihydro‐5H‐oxazole(2,3‐b)quinazolin‐5‐one ( 1 ) and hydrochloride salt of 4‐(parafluorobenzoyl)piperidine ( 3.HCl ) by a solvent‐less fusion method. Thus, under optimized conditions, 180°C and a reaction time of 30 min, the powder mixture was transformed into glassy crystals that were initially readily soluble in chloroform but were transformed afterwards over time (2 h) to white precipitates ( 5.HCl ) suspended in chloroform with a yield of 72%.  相似文献   

11.
The photoisomerization of 1,2‐dihydro‐1,2‐azaborine was investigated by high‐level multireference ab initio and density functional theory calculations. The intermediates (IMs) and transition states (TSs) on the S0 and S1 states were optimized using the state‐averaged complete active space self‐consistent field method. The multireference configuration interaction method with the Davidson correction was used to obtain accurate energetics. Moreover, the conical intersections (CIs), which play a crucial role in photoisomerization, were also optimized. On the basis of the calculation results, the most favorable proposed reaction pathway is as follows: reactant→Franck‐Condon region→TS1→CI→IM0→TS0P→product. The product was not directly formed through the CI, and the IM0 existed on the S0 state. These results show that the isomerization of 1,2‐dihydro‐1,2‐azaborine involves both photoreactions and thermal reactions. The calculated results clarify recent experimental observations.  相似文献   

12.
A simple and facile method for the synthesis of 2,3‐dihydroquinazolin‐4(1H)‐ones through the direct cyclocondensation of one‐pot three‐component cyclocondensation of isatoic anhydride, ammonium acetate (or primary amines) and aldehydes; and anthranilamide and aldehydes using silica supported ferric chloride (SiO2‐FeCl3) as catalyst under solvent‐free conditions is described.  相似文献   

13.
An efficient synthesis of 3‐alkyl‐3,4‐dihydro‐4‐thioxobenzoquinazolin‐2(1H)‐ones 3 has been accomplished in two steps and in satisfactory yields from 1‐bromo‐2‐fluorobenzenes 1 . Thus, the reaction of 1‐fluoro‐2‐lithiobenzenes, generated by the Br/Li exchange between 1 and BuLi, with alkyl isothiocyanates, gives N‐alkyl‐2‐fluorobenzothioamides 2 , which, in turn, react with a series of isocyanates in the presence of NaH to give the desired products 3 .  相似文献   

14.
On irradiation (350 nm) in benzene solution, dihydropyranone 3 affords predominantly (75%) the cis‐anti‐cis HH‐dimer 4 , but in smaller amounts (12%) also dimer 5 , wherein one of the six‐membered rings is trans‐fused to the (central) cyclobutane ring. The constitution and configuration of 5 was fully elucidated by NMR‐analysis. On contact with SiO2, 5 isomerizes quantitatively to the cis‐anti‐cis HT‐dimer 7 , the structure of which was established by X‐ray crystal‐structure determination.  相似文献   

15.
An efficient synthesis of novel 2‐aryl‐3‐(phenylamino)‐2,3‐dihydroquinazolin‐4(1H)‐one derivatives using KAl(SO4)2.12H2O (Alum) as a catalyst from an aldehyde and 2‐amino‐N‐phenylbenzohydrazine in ethanol is described. All synthesized derivatives were screened for anti‐bacterial activity. Some compounds exhibited promising anti‐bacterial activity with reference to standard antibiotics.  相似文献   

16.
2‐Substituted‐2,3‐dihydro‐4(1H)‐quinazolinones were synthesized in high to excellent yields through direct cyclocondensation of 2‐anthranilamide with aldehydes or ketones in the presence of a recyclable cerous methanesulfonate by grinding technique under aqueous conditions.  相似文献   

17.
18.
《中国化学会会志》2017,64(2):195-204
The reaction mechanism in the synthesis of particular α‐amino phosphonates from 4‐methyl benzaldehyde, aniline, and trimethyl phosphite in the presence of succinic acid is theoretically investigated. The profile of the potential energy surface is constructed at both HF /6‐31 + G(d,p) and B3LYP /6‐31 + G(d,p) levels of theory for evaluating all the steps involved in the reaction mechanism. In order to investigate the effect of the structure on reactivity, some para ‐substituted benzaldehydes are subjected to kinetic examination. The overall reaction in the presence of electron‐withdrawing groups is thermodynamically much more favorable than in the presence of the electron‐donating groups; similarly, the reaction is kinetically more favorable and much easier in the presence of electron‐withdrawing groups. Moreover, step 2 (imine formation) is recognized as the rate‐determining step at both levels of theory. Also, step 1 is diffusion‐controlled with both electron‐withdrawing and electron‐donating groups, while the other steps are chemically controlled in the reaction mechanism.  相似文献   

19.
A variety of 4‐substituted quinolin‐2(1H)‐ones were prepared and evaluated for N‐methyl‐D‐aspar‐tate (NMDA) receptor binding site activity and their abilities to inhibit neurotoxicity. The 4‐(2‐car‐bethoxyethanamino)‐7‐chloro‐3‐nitroquinolin‐2(1H)‐one ( 9b ) exhibited favorable NMDA receptor binding site activity and 7‐chloro‐4‐(benzylamino)‐3‐nitroquinolin‐2(1H)‐one ( 9c ) showed the most potent neurotoxicity among them. The synthetic strategies involve the use of well known keto ester condensation and reductive ring cyclization of intermediates ( 2a‐d ) to afford 4‐substituted quinolin‐2(1H)‐ones.  相似文献   

20.
The title compounds substituted 2‐lactosylthiothieno[2,3‐d]pyrimidin‐4‐ones 6 were synthesized by the glycosyl reaction and alcoholysis reaction of substituted 2‐thioxo‐thieno[2,3‐d]pyrimidin‐4‐ones 4 ,which is formed by the base catalytic and acetic acidify reaction of amino esters 2 with alkyl or arylisothiocyanates and hepta‐O‐acetyl‐lactosyl bromide in good yields. All of the compounds were confirmed by NMR, ESI‐MS, and elemental analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号