首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of substituted phenyl isocyanates with 2‐amino‐2‐phenylpropanenitrile and 2‐amino‐2‐(4‐nitrophenyl)propanenitrile has been used to prepare substituted 1‐(1‐cyanoethyl‐1‐phenyl)‐3‐phenylureas. In anhydrous phosphoric acid the first products to be formed from 1‐(1‐cyanoethyl‐1‐phenyl)‐3‐phenylureas are phosphates of 4‐methyl‐4‐phenyl‐2‐phenylimino‐5‐imino‐4,5‐dihydro‐1,3‐oxazoles, which on subsequent hydrolysis give the respective ureidocarboxylic acids. On prolongation of the reaction time, the phosphates of 4‐methyl‐4‐phenyl‐2‐phenylimino‐5‐imino‐4,5‐dihydro‐1,3‐oxazoles rearrange to give phosphates of 5‐methyl‐4‐imino‐3,5‐diphenylimidazolidin‐2‐ones, and these are subsequently hydrolysed to the respective substituted 5‐methyl‐3,5‐diphenylimidazolidin‐2,4‐diones. The ureidocarboxylic acids were also prepared by alkaline hydrolysis of 5‐methyl‐3,5‐diphenylimidazolidin‐2,4‐diones. The 5‐methyl‐3,5‐diphenylimidazolidin‐2,4‐diones and ureidocarboxylic acids were characterised by their 1H and 13C NMR spectra. Structure of the 5‐methyl‐5‐(4‐nitrophenyl)‐3‐phenylimidazolidine‐2,4‐dione was verified by X‐ray diffraction. The alkaline hydrolysis of individual imidazolidine‐2,4‐diones was studies spectrophoto‐metrically in sodium hydroxide solutions at 25 °C. The rate‐limiting step of the base catalysed hydrolysis consists in decomposition of the tetrahedral intermediate. The reaction is faster if electron‐acceptor sub‐stituents are present in the 3‐phenyl group of imidazolidine‐2,4‐dione cycle. The pKa values of individual 5‐methyl‐3,5‐diphenylimidazolidine‐2,4‐diones have been determined kinetically.  相似文献   

2.
A series of novel (Z)‐1‐tert‐butyl (or phenyl)‐2‐(1H‐1,2,4‐triazol‐1‐yl)‐ethanone O‐[2,4‐dimethylthiazole (or 4‐methyl‐1,2,3‐thiadiazole) ?5‐carbonyl] oximes 5a – 5c and (1Z, 3Z)‐4,4‐dimethyl‐1‐substitutedphenyl‐2‐(1H‐1,2,4‐triazol‐1‐yl)‐pent‐1‐en‐3‐one O‐[2,4‐dimethylthiazole (or 4‐methyl‐1,2,3‐thiadiazole)‐5‐carbonyl] oximes 6a – 6e were synthesized by the condensations of (Z)‐1‐tert‐butyl (or phenyl)‐2‐(1H‐1,2,4‐triazol‐1‐yl)‐ethanone oximes 3 or (1Z, 3Z)‐4,4‐dimethyl‐1‐substitutedphenyl‐2‐(1H‐1,2,4‐triazol‐1‐yl)‐pent‐1‐en‐3‐one oximes 4 with 2,4‐dimethylthiazole‐5‐carbonyl chloride or 4‐methyl‐1,2,3‐thiadiazole‐5‐carbonyl chloride in the basic condition. Their structures were confirmed by IR, 1H NMR, mass spectroscopy, and elemental analyses. The results of preliminary bioassays showed the title compounds 5 and 6 exhibited moderate to good fungicidal activities. For example, compound 6c possessed 86.4% inhibition against Fusarium oxysporum, and compound 6b exhibited 86.4 and 100% inhibition against Fusarium oxysporum and Cercospora arachidicola Hori at the concentration of 50 mg/L, respectively.  相似文献   

3.
By cyclocondensation of 3‐(1H‐[1,2,4]triazol‐3‐ylsulfanyl)‐pentane‐2,4‐dion with hydroxylamine, hydrazine, methylhidrazine, and arylsulfonyl‐hydrazides, the 3‐(3,5‐dimethyl‐isoxazol‐4‐ylsulfanyl)‐1H‐[1,2,4]triazole ( 2 ) and 3‐(3,5‐dimethyl‐1‐R‐pyrazol‐4‐ylsulfanyl)‐1H‐[1,2,4]triazoles ( 3a , 3b , 3c , 3d ) are synthesized. Under the action of quaternary ammonium salts of azines with limited heating in acetone they form a series of compounds ( 4a , 4b , 4c , 4d , 4e , 4f , 4g , 4h ), which molecules simultaneously contain three different heterocyclic rings. Structures of compounds were confirmed by 1H and 13C NMR, MS, and elemental analysis. The plants growth regulatory activities of compounds 4a , 4b , 4c , 4d , 4e , 4f , 4g , 4h were investigated. Data of biological tests testify that these compounds can be of interest to search for new growth stimulators. J. Heterocyclic Chem., (2010).  相似文献   

4.
Diselenadiphosphetane Diselenides and Triselenadiphospholane Diselenides – Synthesis and Characterization by 31P and 77Se Solid‐State NMR Spectroscopy 1,3‐Diselena‐2,4‐diphosphetane‐2,4‐diselenides (RPSe2)2 with R = Me, Et, t‐Bu, Ph, 4‐Me2NC6H4, 4‐MeOC6H4 have been synthesized by different methods. The insoluble compounds were investigated by 31P and 77Se solid‐state NMR and the purity of the compounds has been checked by their CP MAS sideband NMR spectra. The structure of the investigated compounds has been confirmed by the isotropic and anisotropic values of the chemical shifts and the 1JP–Se coupling constants. In addition, two new 1,2,4‐triselena‐3,5‐diphospholane‐3,5‐diselenides, (RPSe2)2Se (R = Me, Et), formed under similar synthesis conditions, were investigated. Their structure was derived from the 77Se satellites of 31P solution spectra and from solid‐state spectra. For (t‐BuPSe2)2 the experimentally obtained principal values of phosphorus and selenium shielding tensors are compared with values from IGLO calculations (HF und SOS DFPT). The calculated orientations of the principal axes are discussed.  相似文献   

5.
By the reaction aminomethylation, chloromethylation and acylation of 4‐methyl‐4H‐1,2,4‐triazole‐3‐thiol, 4‐methyl‐1‐substituted‐1H‐1,2,4‐triazole‐5(4H)‐thione 1‐8 were obtained. Molecular structure of the obtained compounds was confirmed by an elemental analysis, IR, 1H NMR and 13C NMR spectra and additionally by X‐ray analysis for 2. Six new compounds 1,2,4‐7 were tested for antibacterial activity against Mycobacterium smegmatis, Mycobacterium phlei and avirulent strain Mycobacterium H37Ra.  相似文献   

6.
Upon reaction of 2‐methyl‐, 3‐ethoxycarbonyl, and 4‐ethoxycarbonylbenzenediazonium tetrafluoroborate with 1‐cyclopropyl‐3‐phenylaminohex‐2‐en‐1‐one 3‐cyclopropylcarbonyl‐1‐(substituted phenyl)‐5‐ethyl‐4‐phenylamino‐1H‐pyrazoles are formed. On the other hand, the reaction of 1‐cyclopropyl‐3‐phenylaminohex‐2‐en‐1‐one and 5‐methylaminohept‐4‐en‐3‐one with sterically more demanding 2‐ethoxycarbonylbenzenediazonium tetrafluoroborate does not give the corresponding pyrazoles but the probable intermediates on the route to the pyrazoles: 1‐cyclopropyl‐3‐phenyliminohexane‐1,2,4‐trione 2,4‐bis(2‐ethoxycarbonylphenylhydrazone) and 3‐methyliminoheptane‐2,4,5‐trione 2,4‐bis(2‐ethoxycarbonylphenylhydrazone), respectively. All the compounds were identified on the basis of 1H‐ and 13C‐NMR spectra. The structure of 1‐cyclopropyl‐3‐phenyliminohexane‐1,2,4‐trione 2,4‐bis(2‐ethoxycarbonylphenylhydrazone) was confirmed by means of 15N‐NMR spectra and X‐ray. The bis(2‐ethoxycarbonylphenylhydrazones) were found to show atropoisomerism due to a hindered rotation around the bond between the carbons of imino group and the hydrazono group next to carbonyl. In the case of the crystalline cyclopropyl derivative, the unit cell was found out to contain two molecules of opposite chirality. J. Heterocyclic Chem., (2011).  相似文献   

7.
The basicity of a series of 3,5‐disubstituted 1,2,4‐oxadiazoles in aqueous H2SO4 was examined by means of UV and 1H‐NMR spectroscopy. The experimental data were analyzed by the modified Yates–McClelland method to yield the following pK values: 3,5‐dimethyl‐1,2,4‐oxadiazole, −1.66±0.06; 3‐methyl‐5‐phenyl‐1,2,4‐oxadiazole, −2.61±0.02; 3‐phenyl‐5‐methyl‐1,2,4‐oxadiazole, −2.95±0.01; 3,5‐diphenyl‐1,2,4‐oxadiazole, −3.55±0.06. A pK value of ca. −3.7 was estimated for the parent unsubstituted 1,2,4‐oxadiazole based on substituents' additivity increments. Possible protonation sites of the compounds were discussed in terms of both experimental data and theoretical calculations (HF/6‐31G**). Generally, protonation is most likely to occur at N(4) of the 1,2,4‐oxadiazole ring. However, concurrent formation of both N(4)‐ and N(2)‐protonated species in comparable amounts is possible in the case of 3‐phenyl‐1,2,4‐oxadiazoles.  相似文献   

8.
A kinetic study of the thermolysis of 4‐crotyl‐3,5‐diphenyl‐4H‐1,2,4‐triazole ( 1 ) in a melt of the neat compound was performed at temperatures in the range of 260–350 °C. The main products formed were 1‐crotyl‐3,5‐diphenyl‐1H‐1,2,4‐triazole (3) and 1‐(1‐methylallyl)‐3,5‐diphenyl‐1H‐1,2,4‐triazole ( 4 ) together with 3‐methyl‐2,6‐diphenylpyridine ( 2 ) and 3,5‐diphenyl‐1,2,4‐triazole ( 5 ). Products 2 and 5 were both formed preferentially from 3 and 4 . In the melt was observed first order kinetics. Activation parameters for formation of 3 and 4 were determined. Product 3 : Ea = 95 kJ/mole. Product 4 : Ea= 145 kJ/mole.  相似文献   

9.
1,3,7,8‐Tetraphenyl‐4,8‐dihydro‐1H‐imidazolo[4,5g][1,2,4]benzotriazin‐4‐yl ( 5 ), 8‐(4‐bromophenyl)‐1,3,7‐triphenyl‐4,8‐dihydro‐1H‐imidazolo[4,5g][1,2,4]benzotriazin‐4‐yl ( 6 ), and 8‐(4‐methoxyphenyl)‐1,3,7‐triphenyl‐4,8‐dihydro‐1H‐imidazolo[4,5g][1,2,4]benzotriazin‐4‐yl ( 7 ) were characterized by using X‐ray diffraction crystallography, variable‐temperature magnetic susceptibility studies, and DFT calculations. Radicals 5 – 7 pack in 1 D π stacks made of radical pairs with alternate short and long interplanar distances. The magnetic susceptibility (χ vs. T) of radicals 5 and 6 exhibit broad maxima at (50±2) and (50±4) K, respectively, and are interpreted in terms of an alternating antiferromagnetic Heisenberg linear chain model with average exchange‐interaction values of J=?31.3 and ?35.4 cm?1 (gsolid=2.0030 and 2.0028) and an alternation parameter a=0.15 and 0.38 for 5 and 6 , respectively. However, radical 7 forms 1 D columns of radical pairs with alternating distances; one of the interplanar distances is significantly longer than the other, which decreases the magnetic dimensionality and leads to discrete dimers with a ferromagnetic exchange interaction between the radicals (2J=23.6 cm?1, 2zJ′=?2.8 cm?1, gsolid=2.0028). Magnetic exchange‐coupling interactions in 1,2,4‐benzotriazinyl radicals are sensitive to the degree of slippage and inter‐radical separation, and such subtle changes in structure alter the fine balance between ferro‐ and antiferromagnetic interactions.  相似文献   

10.
The molecule of 3,5‐bis{4‐[(benzimidazol‐1‐yl)methyl]phenyl}‐4H‐1,2,4‐triazol‐4‐amine (L), C30H24N8, has an antiperiplanar conformation of the two terminal benzimidazole groups and forms two‐dimensional networks along the crystallographic b axis via two types of intermolecular hydrogen bonds. However, in catena‐poly[[[dichloridomercury(II)]‐μ‐3,5‐bis{4‐[(benzimidazol‐1‐yl)methyl]phenyl}‐4H‐1,2,4‐triazol‐4‐amine] dichloromethane hemisolvate], {[HgCl2(C30H24N8)]·0.5CH2Cl2}n, synthesized by the combination of L with HgCl2, the L ligand adopts a synperiplanar conformation. The HgII cation lies in a distorted tetrahedral environment, which is defined by two N atoms and two Cl atoms to form a one‐dimensional zigzag chain. These zigzag chains stack via hydrogen bonds which expand the dimensionality of the structure from one to two.  相似文献   

11.
The crystal structures of N‐aryl‐1,2,3,4‐tetrahydro‐3,3‐dimethyl‐2,4‐quinolinediones bearing methoxy‐ ( 1 ), methyl‐ ( 2 ), and chloro‐ ( 3 ) substituents in 2′‐position of the phenyl ring have been determined by X‐ray crystal structure analysis. The heterocyclic ring in 1–3 adopts an envelope conformation, with the smallest ring puckering in the ortho‐chloro derivative 3 . The N‐aryl ring is almost perpendicular with respect to the quinoline‐2,4‐dione ring. The corresponding dihedral angle values are 83.2(1)°, 80.0(9)°, and 83.4(2)° in 1, 2 and 3 , respectively. The hydrogen bond of C H⋅⋅⋅O type joins the molecules of the ortho‐methoxy derivative 1 into dimers. The supramolecular structure also contains two C H⋅⋅⋅π interactions that link the hydrogen‐bonded dimers into sheets. In ortho‐methyl derivative 2 , one C H⋅⋅⋅π interaction generates infinite chains, whereas two C H⋅⋅⋅O hydrogen bonds and three C H⋅⋅⋅π interactions in the ortho‐chloro derivative 3 form three‐dimensional framework. © 2008 Wiley Periodicals, Inc. Heteroatom Chem 19:325–331, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20436  相似文献   

12.
J147 [N‐(2,4‐dimethylphenyl)‐2,2,2‐trifluoro‐N′‐(3‐methoxybenzylidene)acetohydrazide] has recently been reported as a promising new drug for the treatment of Alzheimer's disease. The X‐ray structures of seven new 1,4‐diaryl‐5‐trifluoromethyl‐1H‐1,2,3‐triazoles, namely 1‐(3,4‐dimethylphenyl)‐4‐phenyl‐5‐trifluoromethyl‐1H‐1,2,3‐triazole (C17H14F3N3, 1 ), 1‐(3,4‐dimethylphenyl)‐4‐(3‐methoxyphenyl)‐5‐trifluoromethyl‐1H‐1,2,3‐triazole (C18H16F3N3O, 2 ), 1‐(3,4‐dimethylphenyl)‐4‐(4‐methoxyphenyl)‐5‐trifluoromethyl‐1H‐1,2,3‐triazole (C18H16F3N3O, 3 ), 1‐(2,4‐dimethylphenyl)‐4‐(4‐methoxyphenyl)‐5‐trifluoromethyl‐1H‐1,2,3‐triazole (C18H16F3N3O, 4 ), 1‐[2,4‐bis(trifluoromethyl)phenyl]‐4‐(3‐methoxyphenyl)‐5‐trifluoromethyl‐1H‐1,2,3‐triazole (C18H10F9N3O, 5 ), 1‐(3,4‐dimethoxyphenyl)‐4‐(3,4‐dimethoxyphenyl)‐5‐trifluoromethyl‐1H‐1,2,3‐triazole (C19H18F3N3O4, 6 ) and 3‐[4‐(3,4‐dimethoxyphenyl)‐5‐(trifluoromethyl)‐1H‐1,2,3‐triazol‐1‐yl]phenol (C17H14F3N3O3, 7 ), have been determined and compared to that of J147 . B3LYP/6‐311++G(d,p) calculations have been performed to determine the potential surface and molecular electrostatic potential (MEP) of J147 , and to examine the correlation between hydrazone J147 and the 1,2,3‐triazoles, both bearing a CF3 substituent. Using MEPs, it was found that the minimum‐energy conformation of 4 , which is nearly identical to its X‐ray structure, is closely related to one of the J147 seven minima.  相似文献   

13.
Two mononuclear copper complexes, {bis[(3,5‐dimethyl‐1H‐pyrazol‐1‐yl‐κN2)methyl]amine‐κN}(3,5‐dimethyl‐1H‐pyrazole‐κN2)(perchlorato‐κO)copper(II) perchlorate, [Cu(ClO4)(C5H8N2)(C12H19N5)]ClO4, (I), and {bis[(3,5‐dimethyl‐1H‐pyrazol‐1‐yl‐κN2)methyl]amine‐κN}bis(3,5‐dimethyl‐1H‐pyrazole‐κN2)copper(II) bis(hexafluoridophosphate), [Cu(C5H8N2)2(C12H19N5)](PF6)2, (II), have been synthesized by the reactions of different copper salts with the tripodal ligand tris[(3,5‐dimethyl‐1H‐pyrazol‐1‐yl)methyl]amine (TDPA) in acetone–water solutions at room temperature. Single‐crystal X‐ray diffraction analysis revealed that they contain the new tridentate ligand bis[(3,5‐dimethyl‐1H‐pyrazol‐1‐yl)methyl]amine (BDPA), which cannot be obtained by normal organic reactions and has thus been captured in the solid state by in situ synthesis. The coordination of the CuII ion is distorted square pyramidal in (I) and distorted trigonal bipyramidal in (II). The new in situ generated tridentate BDPA ligand can act as a meridional or facial ligand during the process of coordination. The crystal structures of these two compounds are stabilized by classical hydrogen bonding as well as intricate nonclassical hydrogen‐bond interactions.  相似文献   

14.
In order to find novel bleaching herbicide lead compounds, a series of novel 3‐aryl‐4‐substituted‐5‐[3‐(trifluoromethyl)phenoxy]‐1,2,4‐triazoles were designed and synthesized by the multi‐step reactions. N‐(Arylformamido)phenylthioureas undergo ring closure in the presence of sodium hydroxide to generate 3‐aryl‐4‐substituted‐4H‐[1,2,4]triazol‐5‐thiols 1 , which reacted with methyl sulfate in the presence of K2CO3 to give 3‐aryl‐5‐methylsulfanyl‐4‐substituted‐4H‐[1,2,4]triazoles 2 . The target compounds 4 were synthesized by the oxidation of 2 in the presence of H2O2 and Na2WO4, followed by the substitution with 3‐(trifluoromethyl)phenol in moderate to good yields. Their structures were confirmed by IR, 1H NMR, EI–MS, and elemental analyses. The preliminary bioassay indicated that some of them displayed moderate to good selective herbicidal activity against Brassica campestris L at the concentration of 100 µg/mL. Compounds 4c and 4i possessed 75.0% and 82.6% inhibition against Brassica campestris L at the concentration of 100 µg/mL. However, the target compounds 4 showed weak herbicidal activity against Echinochloa crus‐galli at the concentration of 100 and 10 µg/mL.  相似文献   

15.
X‐ray studies show that 1,3‐diphenyl‐7‐(thien‐2‐yl)‐1,4‐dihydro‐1,2,4‐benzotriazin‐4‐yl ( 6 ) adopts a distorted, slipped π‐stacked structure of centrosymmetric dimers with alternate short and long interplanar distances (3.48 and 3.52 Å). Cyclic voltammograms of 7‐(thien‐2‐yl)benzotriazin‐4‐yl 6 show two fully reversible waves that correspond to the ?1/0 and 0/+1 processes. EPR and DFT studies on radical 6 indicate that the spin density is mainly delocalized over the triazinyl fragment. Magnetic susceptibility measurements show that radical 6 obeys Curie–Weiss behavior in the 5–300 K region with C=0.378 emu K mol?1 and θ=+4.72 K, which is consistent with ferromagnetic interactions between S=1/2 radicals. Fitting the magnetic susceptibility revealed the behavior is consistent with an alternating ferromagnetic chain (g=2.0071, J1=+7.12 cm?1, J2=+1.28 cm?1).  相似文献   

16.
The condensation of 4‐amino‐5‐mercapto‐3‐(2‐phenylquinolin‐4‐yl)/3‐(1‐p‐chlorophenyl‐5‐methyl‐1,2,3‐triazol‐4‐yl)‐1,2,4‐triazoles 1a‐b with chloroacetaldehyde 2a‐b , ω‐bromo‐ω‐(1H‐1,2,4‐triazol‐1‐yl)acetophenone 3a‐b , chloranil 4a‐b , 2‐bromocyclohexanone 5a‐b , 2,4′‐dibromoacetophenone 6a‐b and 2‐bromo‐6′‐methoxy‐2′‐acetonaphthone 7a‐b are described. The structures of the compounds synthesized were confirmed by elemental analyses, IR, 1H NMR and mass spectra. The antibacterial activities were also evaluated.  相似文献   

17.
A new hybrid polydentate template comprising distinctive pharmacophoric groups, namely, ibuprofen, 1,3,4‐oxadiazole, and 1,2,3‐triazole linked through a thioether bridge was achieved by one‐pot synthesis by exploring multicomponent Cu‐catalyzed “click chemistry” approach. The target structures were characterized by NMR, IR, and LC‐Mass. The X‐ray analysis of 2‐(1‐(4‐isobutylphenyl)ethyl)‐5‐(((1‐(3‐nitrophenyl)‐1H‐1,2,3‐triazol‐4‐yl)methyl)thio)‐1,3,4‐oxadiazole ( 8a ) confirmed the assigned structure. The in vitro antibacterial and anticancer activity of these compounds revealed that 2‐(1‐(4‐isobutylphenyl)ethyl)‐5‐(((1‐phenyl‐1H‐1,2,3‐triazol‐4‐yl)methyl)thio)‐1,3,4‐oxadiazole ( 8b ) demonstrated more potent antibacterial activity against Gram‐negative strains (Escherichia coli and Pseudomonas aeruginosa) and 2‐(((1‐(2,4‐dimethylphenyl)‐1H‐1,2,3‐triazol‐4‐yl)methyl)thio)‐5‐(1‐(4 isobutylphenyl)ethyl)‐1,3,4‐oxadiazole ( 8e ) exhibited anticancer activity with IC50 of 27.50 and 31.03 μg/mL against HeLa and MCF‐7 cell lines, respectively.  相似文献   

18.
Some new (3,5‐aryl/methyl‐1H‐pyrazol‐1‐yl)‐(5‐arylamino‐2H‐1,2,3‐triazol‐4‐yl)methanones were synthesized and characterized by 1HNMR, 13C NMR, MS, IR spectra data and elemental analyses or high resolution mass spectra (HRMS). During the procedure, Dimroth rearrangement was used in this synthesis.  相似文献   

19.
One pot green synthesis of 1‐(1,2,4‐triazol‐4‐yl)spiro[azetidine‐2,3′‐(3H)‐indole]‐2′,4′(1′H)‐diones was carried out by the reaction of indole‐2,3‐diones,4‐amino‐4H‐1,2,4‐triazole and acetyl chloride/chloroacetyl chloride in ionic liquid [bmim]PF6 with/without using a catalyst. It was also prepared by conventional method via Schiff's bases, 3‐[4H‐1,2,4‐triazol‐4‐yl]imino‐indol‐2‐one. Further, the corresponding phenoxy derivatives were obtained by the reaction of chloro group attached to azetidine ring with phenols. The synthesized compounds were characterized by analytical and spectral (IR, 1H NMR, 13C NMR, and FAB mass) data. Evaluation for insecticidal activity against Periplaneta americana exhibited promising results.  相似文献   

20.
The series of 6‐substituted 3‐R1‐2H‐[1,2,4]triazino[2,3‐c]quinazolin‐2‐one was prepared via condensation of 3‐(2‐aminophenyl)‐6‐R1‐1,2,4‐triazin‐5‐ones with acylating reagents. Particularities of 1H NMR spectra have been also discussed based on the comparison of experimental and theoretical results for 3‐methyl‐6‐phenyl‐2H‐[1,2,4]triazino[2,3‐c]quinazolin‐2‐one and its 4,3‐isomer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号