首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, heparin‐mimicking hydrogel thin films are covalently attached onto poly(ether sulfone) membrane surfaces to improve anticoagulant property. The hydrogel films display honeycomb‐like porous structure with well controlled thickness and show long‐term stability. After immobilizing the hydrogel films, the membranes show excellent anticoagulant property confirmed by the activated partial thromboplastin time values exceeding 600 s. Meanwhile, the thrombin time values increase from 20 to 61 s as the sodium allysulfonate proportions increase from 0 to 80 mol%. In vitro investigations of protein adsorption and blood‐related complement activation also confirm that the membranes exhibit super‐anticoagulant property. Furthermore, gentamycin sulfate is loaded into the hydrogel films, and the released drug shows significant inhibition toward E. coli bacteria. It is believed that the surface attached heparin‐mimicking hydrogel thin films may show high potential for the applications in various biological fields, such as blood contacting materials and drug loading materials.

  相似文献   


2.
Overcoming drug resistance is a major challenge for cancer therapy. Tumor necrosis factor α‐related apoptosis‐inducing ligand (TRAIL) is a potent therapeutic as an activator of apoptosis, particularly in tumor but not in healthy cells. However, its efficacy is limited by the resistance of tumor cell populations to the therapeutic substance. Here, we have addressed this limitation through the development of a controlled release system, matrix‐metalloproteinase (MMP)‐sensitive and arg‐gly‐asp‐ser (RGDS) peptide functionalized poly (ethylene‐glycol) (PEG) particles which are synthesized via visible‐light‐induced water‐in‐water emulsion polymerization. Quinacrine (QC), a recently discovered TRAIL sensitizer drug, is loaded into the hydrogel carriers and the influence of this system on the apoptosis of a malignant type of brain cancer, glioblastoma multiforme (GBM), has been investigated in detail. The results suggest that MMP‐sensitive particles are cytocompatible and superior to promote TRAIL‐induced apoptosis in GBM cells when loaded with QC. Compared to QC and TRAIL alone, combination of QC‐loaded PEG hydrogel and TRAIL demonstrates synergistic apoptotic inducing behavior. Furthermore, QC‐loaded particles, but not QC or PEG‐hydrogels alone, enhance apoptosis as is measured through expression of apoptosis‐related genes. This system is promising to significantly improve the efficacy of chemotherapeutic drugs and suggests a combination treatment for GBM therapy.

  相似文献   


3.
Colorectal peritoneal carcinomatosis (CRPC) is a common systemic metastasis of intra‐abdominal cancers. Intraperitoneal chemotherapy against CRPC is at present the preferred treatment. The aim of this study is to develop a novel hydrogel drug delivery system through the combination of 5‐fluorouracil (5‐FU) loaded polymeric micelles and cisplatin (DDP) in biodegradable thermosensitive chitosan (CS) hydrogel. The prepared CS hydrogel drug is a free‐flowing solution at room temperature and forms a stationary gel at body temperature. Therefore, a CRPC mouse model is established to investigate the antitumor activity of CS hydrogel drug system. The results suggest that intraperitoneal administration of CS hydrogel drug can inhibit tumor growth and metastasis, and prolong survival time compared with other groups, thus improving the chemotherapeutic effect. Ki‐67 immunohistochemical analysis reveals that tumors in the CS hydrogel drug group has lower cell proliferation in contrast to other groups (P < 0.001). Furthermore, hematoxylin‐eosin staining of liver and lung tissue indicates that the CS hydrogel drug has also a certain inhibitory effect on colorectal cancer metastasis to the liver and lung. Hence, the work highlights the potential clinical applications of the CS hydrogel drug.

  相似文献   


4.
Hypoxia plays a critical role in the development and wound healing process, as well as a number of pathological conditions. Here, dextran‐based hypoxia‐inducible (Dex‐HI) hydrogels formed with in situ oxygen consumption via a laccase−medicated reaction are reported. Oxygen levels and gradients were accurately predicted by mathematical simulation. It is demonstrated that Dex‐HI hydrogels provide prolonged hypoxic conditions up to 12 h. The Dex‐HI hydrogel offers an innovative approach to delineate not only the mechanism by which hypoxia regulates cellular responses, but may facilitate the discovery of new pathways involved in the generation of hypoxic and oxygen gradient environments.

  相似文献   


5.
The development of chronic wounds has been frequently associated with alkaline pH values. The application of pH‐modulating wound dressings can, therefore, be a promising treatment option to promote normal wound healing. This study reports on the development and characterization of acidic hydrogel dressings based on interpenetrating poly(ethylene glycol) diacrylate/acrylic acid/alginate networks. The incorporation of ionizable carboxylic acid groups results in high liquid uptake up to 500%. The combination of two separate polymer networks significantly improves the tensile and compressive stability. In a 2D cell migration assay, the application of hydrogels (0% to 1.5% acrylic acid) results in complete “wound” closure; hydrogels with 0.25% acrylic acid significantly increase the cell migration velocity to 19.8 ± 1.9 µm h−1. The most promising formulation (hydrogels with 0.25% acrylic acid) is tested on 3D human skin constructs, increasing keratinocyte ingrowth into the wound by 164%.

  相似文献   


6.
Well‐defined poly(ethylene glycol)‐b‐allyl functional polylactide‐b‐polylactides (PEG‐APLA‐PLAs) are synthesized through sequential ring‐opening polymerization. PEG‐APLA‐PLAs that have amphiphilic properties and reactive allyl side chains on their intermediate blocks are successfully transferred to core–shell interface cross‐linked micelles (ICMs) by micellization and UV‐initiated irradiation. ICMs have demonstrated enhanced colloidal stability in physiological‐mimicking media. Hydrophobic molecules such as Nile Red or doxorubicin (Dox) are readily loaded into ICMs; the resulting drug‐ICM formulations possess slow and sustained drug release profiles under physiological‐mimicking conditions. ICMs exhibit negligible cytotoxicity in human uterine sarcoma cancer cells by using biodegradable aliphatic polyester as the hydrophobic segments. Relative to free Dox, Dox‐loaded ICMs show a reduced cytotoxicity due to the late intracellular release of Dox from ICMs. Overall, ICMs represent a new type of biodegradable cross‐linked micelle and can be employed as a promising platform for delivering a broad variety of hydrophobic drugs.

  相似文献   


7.
This article reports the behavior of embryonic neural stem cells on a hydrogel that combines cationic, non‐specific cell adhesion motifs with glycine‐arginine‐glycine‐aspartic acid‐serine‐phenylalanine (GRGDSF)‐peptides as specific cell adhesion moieties. Therefore, three hydrogels are prepared by free radical polymerization that contains either a GRGDSF‐peptide residue ( P1 ), amino ethylmethacrylate as a cationic residue ( P2 ), or a combination of both motifs ( P3 ). For each gel, cross linker concentrations of 8 mol% is used to have a comparable gel stiffness of 8–9 kPa. The cell experiments indicate a synergistic effect of the non‐specific, cationic residues, and the specific GRGDSF‐peptides on embryonic neural stem cell behavior that is especially pronounced in the cell adhesion experiments by more than doubling the number of cells after 72 h when comparing P3 with P2 and is less pronounced in the proliferation and differentiation experiments.

  相似文献   


8.
Applications of enzymes are intensively studied, particularly for biomedical applications. However, encapsulation or immobilization of enzymes without deactivation and long‐term use of enzymes are still at issue. This study focuses on the polymeric vesicles “PICsomes” for encapsulation of enzymes to develop a hecto‐nanometer‐scaled enzyme‐loaded reactor. The catalytic activity of a PICsome‐based enzyme nanoreactor is carefully examined to clarify the effect of compartmentalization by PICsome. Encapsulation by PICsome provides a stability enhancement of enzymes after 24 h incubation at 37 °C, which is particularly helpful for maintaining the high effective concentration of β‐galactosidase. Moreover, to control the microenvironment inside the nanoreactor, a large amount of dextran, a neutral macromolecule, is encapsulated together with β‐galactosidase in the PICsome. The resulting dextran‐coloaded nanoreactor contributes to the enhancement of enzyme stability, even after exposure to 24 h incubation at −20 °C, mainly due to the antifreezing effect.

  相似文献   


9.
3D hydrogels better replicate in vivo conditions, and yield different results from 2D substrates. However, imaging interactions between cells and the hydrogel microenvironment is challenging because of light diffraction and poor focal depth. Here, cryosectioning and vibrating microtomy methods and fixation protocols are compared. Collagen I/III hydrogel sections (20–100 µm) are fixed with paraformaldehyde (2%–4%) and structurally evaluated. Cryosectioning damaged hydrogels, and vibrating microtomy (100 µm, 2%) yielded the best preservation of microstructure and cell integrity. These results demonstrate a potential processing method that preserves hydrogel and cell integrity, permitting imaging of cell interactions with the microenvironment.

  相似文献   


10.
Here, postfunctionalization and bioapplication of a π‐conjugated polymer named 4‐[4H‐dithieno(3,2‐b:2′,3′‐d)pyrrol‐4‐yl]aniline (DTP‐aryl‐NH2) are reported, which is successfully synthesized via electropolymerization onto the glassy carbon electrode. Folic acid (FA) is used to modify the amino functional polymer via N‐(3‐dimethylaminopropyl)‐N′‐ethylcarbodiimide hydrochloride/N‐hydroxysuccinimide chemistry for the further steps. The selective adhesion of folate receptor positive cells on the surface is followed by the electrochemical methods. Cyclic voltammetry and electrochemical impedance spectroscopy have been used to characterize stepwise modification of the electroactive surface. After optimization studies such as scan rate during the polymer deposition, FA amount for the efficient surface targeting, incubation time with the cells etc., analytical characterization is carried out. The surface morphologies at each step are imaged by using fluorescence microscopy.

  相似文献   


11.
Multivalent aptamer–siRNA conjugates containing multiple mucin‐1 aptamers and BCL2‐specific siRNA are synthesized, and doxorubicin, an anthracycline anticancer drug, is loaded into these conjugates through intercalation with nucleic acids. These doxorubicin‐incorporated multivalent aptamer–siRNA conjugates are transfected to mucin‐1 overexpressing MCF‐7 breast cancer cells and their multidrug‐resistant cell lines. Doxorubicin‐incorporated multivalent aptamer–siRNA conjugates exert promising anticancer effects, such as activation of caspase‐3/7 and decrease of cell viability, on multidrug‐resistant cancer cells because of their high intracellular uptake efficiency. Thus, this delivery system is an efficient tool for combination oncotherapy with chemotherapeutics and nucleic acid drugs to overcome multidrug resistance.

  相似文献   


12.
Natural and synthetic cross‐linked polymers allow the improvement of cytocompatibility and mechanical properties of the individual polymers. In osteochondral lesions of big size it will be required the use of scaffolds to repair the lesion. In this work a borax cross‐linked scaffold based on fumarate‐vinyl acetate copolymer and chitosan directed to osteochondrondral tissue engineering is developed. The cross‐linked scaffolds and physical blends of the polymers are analyzed in based on their morphology, glass transition temperature, and mechanical properties. In addition, the stability, degradation behavior, and the swelling kinetics are studied. The results demonstrate that the borax cross‐linked scaffold exhibits hydrogel behavior with appropriated mechanical properties for bone and cartilage tissue regeneration. Bone marrow progenitor cells and primary chondrocytes are used to demonstrate its osteo‐ and chondrogenic properties, respectively, assessing the osteo‐ and chondroblastic growth and maturation, without evident signs of cytotoxicity as it is evaluated in an in vitro system.

  相似文献   


13.
Fluorenyl‐9‐methoxycarbonyl (Fmoc)‐diphenylalanine (Fmoc‐FF) and Fmoc‐arginine‐glycine‐­aspartate (Fmoc‐RGD) peptides self‐assemble to form a 3D network of supramolecular hydrogel (Fmoc‐FF/Fmoc‐RGD), which provides a nanofibrous network that uniquely presents bioactive ligands at the fiber surface for cell attachment. In the present study, mesenchymal stem cells (MSCs) in Fmoc‐FF/Fmoc‐RGD hydrogel increase in proliferation and survival compared to those in Fmoc‐FF/Fmoc‐RGE hydrogel. Moreover, MSCs encapsulated in Fmoc‐FF/Fmoc‐RGD hydrogel and induced in each defined induction medium undergo in vitro osteogenic, adipogenic, and chondrogenic differentiation. For in vivo differentiation, MSCs encapsulated in hydrogel are induced in each defined medium for one week, followed by injection into gelatin sponges and transplantation into immunodeficient mice for four weeks. MSCs in Fmoc‐FF/Fmoc‐RGD hydrogel increase in differentiation into osteogenic, adipogenic, and chondrogenic differentiation, compared to those in Fmoc‐FF/Fmoc‐RGE hydrogel. This study concludes that nanofibers formed by the self‐assembly of Fmoc‐FF and Fmoc‐RGD are suitable for the attachment, proliferation, and multi‐differentiation of MSCs, and can be applied in musculoskeletal tissue engineering.

  相似文献   


14.
Cell‐based therapies have great potential to regenerate and repair injured articular cartilage, and a range of synthetic and natural polymer‐based hydrogels have been used in combination with stem cells and growth factors for this purpose. Although the hydrogel scaffolds developed to date possess many favorable characteristics, achieving the required mechanical properties has remained a challenge. A hydrogel system with tunable mechanical properties, composed of a mixture of natural and synthetic polymers, and its use for the encapsulation of adipose derived stem/stromal cells (ASCs) is described. Solutions of methacrylated chondroitin sulfate (MCS) are mixed with solutions of acrylate‐poly(trimethylene carbonate)‐b‐poly(ethylene glycol)‐b‐poly(trimethylene carbonate)‐acrylate (PEG‐(PTMC‐A)2) in phosphate buffered saline and crosslinked via thermally initiated free radical polymerization. The hydrogel compressive equilibrium moduli and toughness are readily tailored by varying the concentration of the pre‐polymers, as well as the molecular weight of the PEG used to prepare the PEG‐(PTMC‐A)2. Two peptide sequences, GVOGEA and GGGGRGDS, are individually conjugated to the MCS to facilitate cell binding. The presence of the peptide ligands yields high ASC viability and long term metabolic activity following encapsulation in hydrogels prepared using the thermal initiator system. Overall, these hydrogels show promise as a minimally invasive ASC delivery strategy for chondral defect repair.

  相似文献   


15.
Electrospinning is a well‐known technique for the preparation of scaffolds for biomedical applications. In this work, a continuous electrospinning method for gel fiber preparation is presented without a spinning window. As proof of concept, the preparation of poly(aspartic acid)‐based hydrogel fibers and their properties are described by using poly(succinimide) as shell polymer and 2,2,4(2,4,4)‐trimethyl‐1,6‐hexanediamine as cross‐linker in the core of the nozzle. Cross‐linking takes place as the two solutions get in contact at the tip of the nozzle. The impact of solution concentrations and feeding rates on fiber morphology, proof of the presence of cross‐links as well as pH sensitivity after the transformation of the poly(succinimide)‐based material to poly(aspartic acid) is presented.

  相似文献   


16.
Aggregation‐caused quenching (ACQ) is a general phenomenon that is faced by traditional fluorescent polymers. Aggregation‐induced emission (AIE) is exactly opposite to ACQ. AIE molecules are almost nonemissive in their molecularly dissolved state, but they can be induced to show high fluorescence in the aggregated or solid state. Incorporation of AIE phenomenon into polymer design has yielded various polymers with AIE characteristics. In this review, the recent progress of AIE polymers for biological applications is summarized.

  相似文献   


17.
Graphene oxide (GO) has received increasing attention in bioengineering fields due to its unique biophysical and electrical properties, along with excellent biocompatibility. The application of GO nanoparticles (GO‐NPs) to engineer self‐renewal and differentiation of human fetal neural stem cells (hfNSCs) is reported. GO‐NPs added to hfNSC culture during neurosphere formation substantially promote cell‐to‐cell and cell‐to‐matrix interactions in neurospheres. Accordingly, GO‐NP‐treated hfNSCs show enhanced self‐renewal ability and accelerated differentiation compared to untreated cells, indicating the utility of GO in developing stem cell therapies for neurogenesis.

  相似文献   


18.
The phase behavior of a dendritic amphiphile containing a Newkome‐type dendron as the hydrophilic moiety and a cholesterol unit as the hydrophobic segment is investigated at the air–liquid interface. The amphiphile forms stable monomolecular films at the air–liquid interface on different subphases. Furthermore, the mineralization of calcium phosphate beneath the monolayer at different calcium and phosphate concentrations versus mineralization time shows that at low calcium and phosphate concentrations needles form, whereas flakes and spheres dominate at higher concentrations. Energy‐dispersive X‐ray spectroscopy, X‐ray photoelectron spectroscopy, and electron diffraction confirm the formation of calcium phosphate. High‐resolution transmission electron microscopy and electron diffraction confirm the predominant formation of octacalcium phosphate and hydroxyapatite. The data also indicate that the final products form via a complex multistep reaction, including an association step, where nano‐needles aggregate into larger flake‐like objects.

  相似文献   


19.
Electrospun fibers of hydrophilic polymers meet challenges in a rapid degradation of fiber matrices and discharge of antibiotics to comply with requirements of infection control as a dermal regeneration template. In the current study, a pH conversion process is initially developed to ensure fluent electrospinning, an efficient in situ cross‐linking of electrospun gelatin fibers with oxidized alginate and simultaneous loading of gentamicin sulfate (GS) and hydrophobic ciprofloxacin into fibers. The dual drug‐loaded fibers indicate a complete release of GS during 6 d and a sustained release of ciprofloxacin for over three weeks, and the antibiotics release indicates significant growth inhibitions on Pseudomonas aeruginosa and Staphylococcus epidermidis. The wound healing efficacy is evaluated on a deep burn model infected with 108 CFU of P. aeruginosa. Compared with fibers with loaded individual drugs, the concomitant release of GS and ciprofloxacin significantly reduces the bacteria numbers in wound and livers, at around 2.30 × 105 and 1.25 × 103 CFU after 3 d, respectively. The wound re‐epithelization, blood vessel formation, collagen deposition, and tissue remodeling process are accelerated with a complete healing observed after 21 d. This study provides a feasible strategy to design cross‐linked hydrophilic fibers with an extended drug release for biomedical applications.

  相似文献   


20.
Carbon nanotube (CNT)‐hydrogel nanocomposites are beneficial for various biomedical applications, such as nerve regeneration, tissue engineering, sensing, or implant coatings. Still, there are impediments to developing nanocomposites, including attaining a homogeneous CNT‐polymer dispersion or patterning CNTs on hydrogels. While few approaches have been reported for patterning CNTs on polymeric substrates, these methods include high temperature, high vacuum or utilize a sacrificial layer and, hence, are incompatible with hydrogels as they lead to irreversible collapse in hydrogel structure. In this study, a novel two‐step method is designed to transfer CNTs onto hydrogels. First, dense CNTs are grown on quartz substrates. Subsequently, hydrogel solutions are deposited on the quartz‐grown CNTs. Upon gelation, the hydrogel with transferred CNTs is peeled from the quartz. Successful transfer is confirmed by scanning electron microscopy and indirectly by cell attachment. The efficient transfer is attributed to π‐interactions pregelation between the polymers in solution and the CNTs.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号