首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zinc thiocyanate complexes have been found to be biologically active compounds. Zinc is also an essential element for the normal function of most organisms and is the main constituent in a number of metalloenzyme proteins. Pyrimidine and aminopyrimidine derivatives are biologically very important as they are components of nucleic acids. Thiocyanate ions can bridge metal ions by employing both their N and S atoms for coordination. They can play an important role in assembling different coordination structures and yield an interesting variety of one‐, two‐ and three‐dimensional polymeric metal–thiocyanate supramolecular frameworks. The structure of a new zinc thiocyanate–aminopyrimidine organic–inorganic compound, (C6H9ClN3)2[Zn(NCS)4]·2C6H8ClN3·2H2O, is reported. The asymmetric unit consist of half a tetrathiocyanatozinc(II) dianion, an uncoordinated 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidinium cation, a 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine molecule and a water molecule. The ZnII atom adopts a distorted tetrahedral coordination geometry and is coordinated by four N atoms from the thiocyanate anions. The ZnII atom is located on a special position (twofold axis of symmetry). The pyrimidinium cation and the pyrimidine molecule are not coordinated to the ZnII atom, but are hydrogen bonded to the uncoordinated water molecules and the metal‐coordinated thiocyanate ligands. The pyrimidine molecules and pyrimidinium cations also form base‐pair‐like structures with an R22(8) ring motif via N—H…N hydrogen bonds. The crystal structure is further stabilized by intermolecular N—H…O, O—H…S, N—H…S and O—H…N hydrogen bonds, by intramolecular N—H…Cl and C—H…Cl hydrogen bonds, and also by π–π stacking interactions.  相似文献   

2.
In solid‐state engineering, cocrystallization is a strategy actively pursued for pharmaceuticals. Two 1:1 cocrystals of 5‐fluorouracil (5FU; systematic name: 5‐fluoro‐1,3‐dihydropyrimidine‐2,4‐dione), namely 5‐fluorouracil–5‐bromothiophene‐2‐carboxylic acid (1/1), C5H3BrO2S·C4H3FN2O2, (I), and 5‐fluorouracil–thiophene‐2‐carboxylic acid (1/1), C4H3FN2O2·C5H4O2S, (II), have been synthesized and characterized by single‐crystal X‐ray diffraction studies. In both cocrystals, carboxylic acid molecules are linked through an acid–acid R 22(8) homosynthon (O—H…O) to form a carboxylic acid dimer and 5FU molecules are connected through two types of base pairs [homosynthon, R 22(8) motif] via a pair of N—H…O hydrogen bonds. The crystal structures are further stabilized by C—H…O interactions in (II) and C—Br…O interactions in (I). In both crystal structures, π–π stacking and C—F…π interactions are also observed.  相似文献   

3.
Two new salts, namely 2,6‐diamino‐4‐chloropyrimidinium 2‐carboxy‐3‐nitrobenzoate, C4H6ClN4+·C8H4NO6, (I), and 2,6‐diamino‐4‐chloropyrimidinium p‐toluenesulfonate monohydrate, C4H6ClN4+·C7H7O3S·H2O, (II), have been synthesized and characterized by single‐crystal X‐ray diffraction. In both crystal structures, the N atom in the 1‐position of the pyrimidine ring is protonated. In salt (I), the protonated N atom and the amino group of the pyrimidinium cation interact with the carboxylate group of the anion through N—H…O hydrogen bonds to form a heterosynthon with an R 22(8) ring motif. In hydrated salt (II), the presence of the water molecule prevents the formation of the familiar R 22(8) ring motif. Instead, an expanded ring [i.e. R 32(8)] is formed involving the sulfonate group, the pyrimidinium cation and the water molecule. Both salts form a supramolecular homosynthon [R 22(8) ring motif] through N—H…N hydrogen bonds. The molecular structures are further stabilized by π–π stacking, and C=O…π, C—H…O and C—H…Cl interactions.  相似文献   

4.
Electroactive metallocene polymers are of interest due to the possibility that they offer a muscle‐like response, and in gel systems very large volume changes are possible. The ferrocenyl moiety exhibits physical and electrochemical stability of the neutral and oxidized forms and could be a candidate for use as the redox‐active group in these materials. The title compounds, [Fe(C5H5)(C10H11O2)], (I), and [Fe(C10H11O2)2], (II), comprise a typical ferrocene core with coplanar and approximately eclipsed cyclopentadienyl (Cp) rings. In (I), there is a single methyl methacrylate substituent, with the other Cp ring unsubstituted. In (II), a methyl methacrylate substituent on each Cp ring completes the structure. In both compounds, there is an s‐trans geometry of the vinyl and carbonyl components of the methacrylate group. Inversion dimers formed through C—H...O contacts dominate the crystal packing of both molecules. Weak C—H...π(ring) contacts and, in the case of (I), an unusual C—H...π(alkene) contact further stabilize the structures.  相似文献   

5.
Because of their versatile coordination modes and strong coordination ability for metals, triazole ligands can provide a wide range of possibilities for the construction of metal–organic frameworks. Three transition‐metal complexes, namely bis(μ‐1,2,4‐triazol‐4‐ide‐3‐carboxylato)‐κ3N 2,O :N 13N 1:N 2,O‐bis[triamminenickel(II)] tetrahydrate, [Ni2(C3HN3O2)2(NH3)6]·4H2O, (I), catena‐poly[[[diamminediaquacopper(II)]‐μ‐1,2,4‐triazol‐4‐ide‐3‐carboxylato‐κ3N 1:N 4,O‐[diamminecopper(II)]‐μ‐1,2,4‐triazol‐4‐ide‐3‐carboxylato‐κ3N 4,O :N 1] dihydrate], {[Cu2(C3HN3O2)2(NH3)4(H2O)2]·2H2O}n , (II), (μ‐5‐amino‐1,2,4‐triazol‐1‐ide‐3‐carboxylato‐κ2N 1:N 2)di‐μ‐hydroxido‐κ4O :O‐bis[triamminecobalt(III)] nitrate hydroxide trihydrate, [Co2(C3H2N4O2)(OH)2(NH3)6](NO3)(OH)·3H2O, (III), with different structural forms have been prepared by the reaction of transition metal salts, i.e. NiCl2, CuCl2 and Co(NO3)2, with 1,2,4‐triazole‐3‐carboxylic acid or 3‐amino‐1,2,4‐triazole‐5‐carboxylic acid hemihydrate in aqueous ammonia at room temperature. Compound (I) is a dinuclear complex. Extensive O—H…O, O—H…N and N—H…O hydrogen bonds and π–π stacking interactions between the centroids of the triazole rings contribute to the formation of the three‐dimensional supramolecular structure. Compound (II) exhibits a one‐dimensional chain structure, with O—H…O hydrogen bonds and weak O—H…N, N—H…O and C—H…O hydrogen bonds linking anions and lattice water molecules into the three‐dimensional supramolecular structure. Compared with compound (I), compound (III) is a structurally different dinuclear complex. Extensive N—H…O, N—H…N, O—H…N and O—H…O hydrogen bonding occurs in the structure, leading to the formation of the three‐dimensional supramolecular structure.  相似文献   

6.
Three photoluminescent complexes containing either ZnII or CdII have been synthesized and their structures determined. Bis[4‐amino‐3,5‐bis(pyridin‐2‐yl)‐1,2,4‐triazole‐κ2N 1,N 5]bis(dicyanamido‐κN 1)zinc(II), [Zn(C12H10N6)2(C2N3)2], (I), bis[4‐amino‐3,5‐bis(pyridin‐2‐yl)‐1,2,4‐triazole‐κ2N 1,N 5]bis(dicyanamido‐κN 1)cadmium(II), [Cd(C12H10N6)2(C2N3)2], (II), and bis[4‐amino‐3,5‐bis(pyridin‐2‐yl)‐1,2,4‐triazole‐κ2N 1,N 5]bis(tricyanomethanido‐κN 1)cadmium(II), [Cd(C12H10N6)2(C4N3)2], (III), all crystallize in the space group P , with the metal centres lying on centres of inversion, but neither analogues (I) and (II) nor CdII complexes (II) and (III) are isomorphous. A combination of N—H…N and C—H…N hydrogen bonds and π–π stacking interactions generates three‐dimensional framework structures in (I) and (II), and a sheet structure in (III). The photoluminescence spectra of (I)–(III) indicate that the energies of the π–π* transitions in the coordinated triazole ligand are modified by minor changes of the ligand geometry associated with coordination to the metal centres.  相似文献   

7.
The study of ternary systems is interesting because it introduces the concept of molecular preference/competition into the system where one molecule may be displaced because the association between the other two is significantly stronger. Current definitions of a tertiary system indicate that solvent molecules are excluded from the molecule count of the system and some of the latest definitions state that any molecule that is not a solid in the parent form at room temperature should also be excluded from the molecule count. In the structure of the quinoline adduct hydrate of tryptaminium 3,5‐dinitrobenzoate, 3C10H13N2+·3C7H3N2O6·2C9H7N·2H2O, the asymmetric unit comprises multiple cation and anion species which are conformationally similar among each type set. In the crystal, a one‐dimensional hydrogen‐bonded supramolecular structure is generated through extensive intra‐ and inter‐unit aminium N—H…O and N—H…N, and water O—H…O hydrogen bonds. Within the central‐core hydrogen‐bonding associations, conjoined cyclic R44(10), R53(10) and R44(12) motifs are generated. The unit is expanded into a one‐dimensional column‐like polymer extending along [010]. Present also in the crystal packing of the structure are a total of 19 π–π interactions involving both cation, anion and quinoline species [ring‐centroid separation range = 3.395 (3)–3.797 (3) Å], as well as a number of weak C—H…O hydrogen‐bonding associations. The presence of the two water molecules in the crystal structure is considered to be the principal causative factor in the low symmetry of the asymmetric unit.  相似文献   

8.
The new asymmetrical organic ligand 2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole ( L , C17H13N5O), containing pyridine and imidazole terminal groups, as well as potential oxdiazole coordination sites, was designed and synthesized. The coordination chemistry of L with soft AgI, CuI and CdII metal ions was investigated and three new coordination polymers (CPs), namely, catena‐poly[[silver(I)‐μ‐2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole] hexafluoridophosphate], {[Ag( L )]PF6}n, catena‐poly[[copper(I)‐di‐μ‐iodido‐copper(I)‐bis(μ‐2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole)] 1,4‐dioxane monosolvate], {[Cu2I2( L )2]·C4H8O2}n, and catena‐poly[[[dinitratocopper(II)]‐bis(μ‐2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole)]–methanol–water (1/1/0.65)], {[Cd( L )2(NO3)2]·2CH4O·0.65H2O}n, were obtained. The experimental results show that ligand L coordinates easily with linear AgI, tetrahedral CuI and octahedral CdII metal atoms to form one‐dimensional polymeric structures. The intermediate oxadiazole ring does not participate in the coordination interactions with the metal ions. In all three CPs, weak π–π interactions between the nearly coplanar pyridine, oxadiazole and benzene rings play an important role in the packing of the polymeric chains.  相似文献   

9.
By alternating‐current electrochemical synthesis crystals of {Cu[H2NC5H4N(C3H5)]Br2} ˙ H2O ( I ), {Cu[H2NC5H4N(C3H5)]Br0.65Cl1.35} ˙ H2O ( II ) and {Cu[H2NC5H4N(C3H5)]Cl2} ( III ) π‐complexes have been obtained and structurally investigated. The I and II compounds are isostructural and crystallize in a monoclinic sp. gr. P21/c, I : a = 7.359(2)Å, b = 12.3880(6)Å, c = 13.637(3)Å, β = 107.03(1)°, V = 1188.7(4)Å3, Z = 4 for C8H13N2OBr2Cu composition, R = 0.0293 for 2140 reflections. II : a = 7.2771(6)Å, b = 12.3338(3)Å, c = 13.4366(7)Å, β = 107.632(2)°, V = 1149.3(1)Å3, Z = 4 for C8H13N2Br0.65Cl1.35Cu composition, R = 0.0463 for 2185 reflections. Metal and halogen atoms form centrosymmetric Cu2X4 dimers. Each copper atom is surrounded by three halogen atoms and by a weakly bonded C=C‐group of the onium moiety. Isolated {Cu[H2NC5H4N(C3H5)]}2X4 dimers are combined into a three‐dimensional network due to a bridging function of water molecules via a system of rather strong hydrogen bonds. Chlorine derivative III crystallizes in another structure type: sp. gr. C2/c, a = 21.568(7)Å, b = 7.260(2)Å, c = 13.331(3)Å, β = 95.65(2)°, V = 2077(2)Å3, Z = 8 for C8H11N2Cl2Cu composition. Copper atom, included in CuCl2 isolated fragment, is coordinated to a C=C‐bond of ligand moiety. N‐H…Cl hydrogen bonds unite Cu[H2NC5H4N(C3H5)]Cl2 subunits into infinite ribbons. π‐Interaction in III appears to be more effective than in I and II .  相似文献   

10.
Metal‐π‐Arene‐Interactions in the Solid‐State Structures of Two Lewis Donor‐Free Arylbis(cyclopentadienyl)lanthanoids Ar*Yb(C5H4Me)2 ( 1 ) and Ar*SmCp2 ( 2 ) (Ar* = 2,6‐Mes2C6H3) have been obtained by the reaction of LiAr* with Yb(C5H4Me)3 or SmCp3 in toluene. Red crystals of 1 and orange crystals of 2 were characterized by X‐ray structure analysis. The lanthanoids are η5‐coordinated to the cyclopentadienyl ligands and η1‐coordinated to the ipso carbon atom of the aryl groups. Additional π‐arene contacts to one mesityl group give rise to a different pyramidalisation of the metal centers, which depends on the size of the central lanthanoid atom.  相似文献   

11.
The salts [Cu(phen)3][Cu(pheida)2]·10H2O ( 1 ) and [(phen)2Cu(μ‐BAAP)Cu(μ‐BAAP)Cu(phen)2][Cu(BAAP)2]·8.5H2O ( 2 ) (H2pheida = N‐phenetyl‐iminodiacetic acid, H2BAAP = N‐benzylaminoacetic‐2‐propionic acid, phen = 1, 10‐phenanthroline) have been prepared and studied by thermal, spectroscopic and X‐ray diffraction methods. 1 has the rather unusual [Cu(phen)3]2+ cation and two non‐equivalent [Cu(pheida)2]2— anions with a coordination type 4+2 but quite different tetragonality (T = 0.848 and 0.703 for anions 1 and 2, respectively). The crystal consists of multi‐π, π‐stacked chains (…anion 2 — cation — cation — anion 2…) connected by hydrophobic interactions; these chains build channels which are partially filled by anions 1 and water molecules. In contrast, compound 2 has a mixed‐ligand trinuclear cation with a bridging central moiety close similar to the counter anion. The formation of such a trinuclear cation is discussed as a consequence of the most advantageous molecular recognition process between [Cu(phen)2(H2O)1 or 2]2+ and [Cu(BAAP)2]2— in solution. In the crystal of 2, multi‐π, π‐stacked arrays of C6‐rings from phen and (BAAP)2— ligands of trinuclear cations generate channels where counter anions and water molecules are located.  相似文献   

12.
Hydrazone derivatives exhibit a wide range of biological activities, while pyrazolo[3,4‐b]quinoline derivatives, on the other hand, exhibit both antimicrobial and antiviral activity, so that all new derivatives in these chemical classes are potentially of value. Dry grinding of a mixture of 2‐chloroquinoline‐3‐carbaldehyde and 4‐methylphenylhydrazinium chloride gives (E)‐1‐[(2‐chloroquinolin‐3‐yl)methylidene]‐2‐(4‐methylphenyl)hydrazine, C17H14ClN3, (I), while the same regents in methanol in the presence of sodium cyanoborohydride give 1‐(4‐methylphenyl)‐4,9‐dihydro‐1H‐pyrazolo[3,4‐b]quinoline, C17H15N3, (II). The reactions between phenylhydrazinium chloride and either 2‐chloroquinoline‐3‐carbaldehyde or 2‐chloro‐6‐methylquinoline‐3‐carbaldehyde give, respectively, 1‐phenyl‐1H‐pyrazolo[3,4‐b]quinoline, C16H11N3, (III), which crystallizes in the space group Pbcn as a nonmerohedral twin having Z′ = 3, or 6‐methyl‐1‐phenyl‐1H‐pyrazolo[3,4‐b]quinoline, C17H13N3, (IV), which crystallizes in the space group R. The molecules of compound (I) are linked into sheets by a combination of N—H…N and C—H…π(arene) hydrogen bonds, and the molecules of compound (II) are linked by a combination of N—H…N and C—H…π(arene) hydrogen bonds to form a chain of rings. In the structure of compound (III), one of the three independent molecules forms chains generated by C—H…π(arene) hydrogen bonds, with a second type of molecule linked to the chains by a second C—H…π(arene) hydrogen bond and the third type of molecule linked to the chain by multiple π–π stacking interactions. A single C—H…π(arene) hydrogen bond links the molecules of compound (IV) into cyclic centrosymmetric hexamers having (S6) symmetry, which are themselves linked into a three‐dimensional array by π–π stacking interactions.  相似文献   

13.
Due to their versatile coordination modes and metal‐binding conformations, triazolyl ligands can provide a wide range of possibilities for the construction of supramolecular structures. Seven mononuclear transition metal complexes with different structural forms, namely aquabis[3‐(4‐methylphenyl)‐5‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazolato‐κ2N 1,N 5]zinc(II), [Zn(C14H11N4)2(H2O)], (I), bis[5‐(4‐methylphenyl)‐3‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazole‐κ2N 3,N 4]bis(nitrato‐κO )zinc(II), [Zn(NO3)2(C14H12N4)2], (II), bis(methanol‐κO )bis[3‐(4‐methylphenyl)‐5‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazolato‐κ2N 1,N 5]zinc(II), [Zn(C14H11N4)2(CH4O)2], (III), diiodidobis[5‐(4‐methylphenyl)‐3‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazole‐κ2N 3,N 4]cadmium(II), [CdI2(C14H12N4)2], (IV), bis[5‐(4‐methylphenyl)‐3‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazole‐κ2N 3,N 4]bis(nitrato‐κO )cadmium(II), [Cd(NO3)2(C14H12N4)2], (V), aquabis[3‐(4‐methylphenyl)‐5‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazolato‐κ2N 1,N 5]cobalt(II), [Co(C14H11N4)2(H2O)], (VI), and diaquabis[3‐(4‐methylphenyl)‐5‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazolato‐κ2N 1,N 5]nickel(II), [Ni(C14H11N4)2(H2O)2], (VII), have been prepared by the reaction of transition metal salts (ZnII, CdII, CoII and NiII) with 3‐(4‐methylphenyl)‐5‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazole (pymphtzH) under either ambient or hydrothermal conditions. These compounds have been characterized by elemental analysis, IR spectroscopy and single‐crystal X‐ray diffraction. All the complexes form three‐dimensional supramolecular structures through hydrogen bonds or through π–π stacking interactions between the centroids of the pyridyl or arene rings. The pymphtzH and pymphtz entities act as bidentate coordinating ligands in each structure. Moreover, all the pyridyl N atoms are coordinated to metal atoms (Zn, Cd, Co or Ni). The N atom in the 4‐position of the triazole group is coordinated to the Zn and Cd atoms in the crystal structures of (II), (IV) and (V), while the N atom in the 1‐position of the triazolate group is coordinated to the Zn, Co and Ni atoms in (I), (III), (VI) and (VII).  相似文献   

14.
Semirigid organic ligands can adopt different conformations to construct coordination polymers with more diverse structures when compared to those constructed from rigid ligands. A new asymmetric semirigid organic ligand, 4‐{2‐[(pyridin‐3‐yl)methyl]‐2H‐tetrazol‐5‐yl}pyridine ( L ), has been prepared and used to synthesize three bimetallic macrocyclic complexes and one coordination polymer, namely, bis(μ‐4‐{2‐[(pyridin‐3‐yl)methyl]‐2H‐tetrazol‐5‐yl}pyridine)bis[dichloridozinc(II)] dichloromethane disolvate, [Zn2Cl4(C12H10N6)2]·2CH2Cl2, ( I ), the analogous chloroform monosolvate, [Zn2Cl4(C12H10N6)2]·CHCl3, ( II ), bis(μ‐4‐{2‐[(pyridin‐3‐yl)methyl]‐2H‐tetrazol‐5‐yl}pyridine)bis[diiodidozinc(II)] dichloromethane disolvate, [Zn2I4(C12H10N6)2]·2CH2Cl2, ( III ), and catena‐poly[[[diiodidozinc(II)]‐μ‐4‐{2‐[(pyridin‐3‐yl)methyl]‐2H‐tetrazol‐5‐yl}pyridine] chloroform monosolvate], {[ZnI2(C12H10N6)]·CHCl3}n, ( IV ), by solution reaction with ZnX2 (X = Cl and I) in a CH2Cl2/CH3OH or CHCl3/CH3OH mixed solvent system at room temperature. Complex ( I ) is isomorphic with complex ( III ) and has a bimetallic ring possessing similar coordination environments for both of the ZnII cations. Although complex ( II ) also contains a bimetallic ring, the two ZnII cations have different coordination environments. Under the influence of the I? anion and guest CHCl3 molecule, complex ( IV ) displays a significantly different structure with respect to complexes ( I )–( III ). C—H…Cl and C—H…N hydrogen bonds, and π–π stacking or C—Cl…π interactions exist in complexes ( I )–( IV ), and these weak interactions play an important role in the three‐dimensional structures of ( I )–( IV ) in the solid state. In addition, the fluorescence properties of L and complexes ( I )–( IV ) were investigated.  相似文献   

15.
The title complex, {[Ni(C15H11N4O2S)2(C10H8N2)(H2O)2]·H2O}n, was synthesized by the reaction of nickel chloride, 4‐{[(1‐phenyl‐1H‐tetrazol‐5‐yl)sulfanyl]methyl}benzoic acid (HL) and 4,4′‐bipyridine (bpy) under hydrothermal conditions. The asymmetric unit contains two half NiII ions, each located on an inversion centre, two L ligands, one bpy ligand, two coordinated water molecules and one unligated water molecule. Each NiII centre is six‐coordinated by two monodentate carboxylate O atoms from two different L ligands, two pyridine N atoms from two different bpy ligands and two terminal water molecules, displaying a nearly ideal octahedral geometry. The NiII ions are bridged by 4,4′‐bipyridine ligands to afford a linear array, with an Ni...Ni separation of 11.361 (1) Å, which is further decorated by two monodentate L ligands trans to each other, resulting in a one‐dimensional fishbone‐like chain structure. These one‐dimensional fishbone‐like chains are further linked by O—H...O, O—H...N and C—H...O hydrogen bonds and π–π stacking interactions to form a three‐dimensional supramolecular architecture. The thermal stability of the title complex was investigated via thermogravimetric analysis.  相似文献   

16.
By the reaction of urea or thiourea, acetylacetone and hydrogen halide (HF, HBr or HI), we have obtained seven new 4,6‐dimethyl‐2‐pyrimido(thio)nium salts, which were characterized by single‐crystal X‐ray diffraction, namely, 4,6‐dimethyl‐2‐oxo‐2,3‐dihydropyrimidin‐1‐ium bifluoride, C6H9N2O+·HF2? or (dmpH)F2H, 4,6‐dimethyl‐2‐oxo‐2,3‐dihydropyrimidin‐1‐ium bromide, C6H9N2O+·Br? or (dmpH)Br, 4,6‐dimethyl‐2‐oxo‐2,3‐dihydropyrimidin‐1‐ium iodide, C6H9N2O+·I? or (dmpH)I, 4,6‐dimethyl‐2‐oxo‐2,3‐dihydropyrimidin‐1‐ium iodide–urea (1/1), C6H9N2O+·I?·CH4N2O or (dmpH)I·ur, 4,6‐dimethyl‐2‐sulfanylidene‐2,3‐dihydropyrimidin‐1‐ium bifluoride–thiourea (1/1), C6H9N2S+·HF2?·CH4N2S or (dmptH)F2H·tu, 4,6‐dimethyl‐2‐sulfanylidene‐2,3‐dihydropyrimidin‐1‐ium bromide, C6H9N2S+·Br? or (dmptH)Br, and 4,6‐dimethyl‐2‐sulfanylidene‐2,3‐dihydropyrimidin‐1‐ium iodide, C6H9N2S+·I? or (dmptH)I. Three HCl derivatives were described previously in the literature, namely, 4,6‐dimethyl‐2‐oxo‐2,3‐dihydropyrimidin‐1‐ium chloride, (dmpH)Cl, 4,6‐dimethyl‐2‐sulfanylidene‐2,3‐dihydropyrimidin‐1‐ium chloride monohydrate, (dmptH)Cl·H2O, and 4,6‐dimethyl‐2‐sulfanylidene‐2,3‐dihydropyrimidin‐1‐ium chloride–thiourea (1/1), (dmptH)Cl·tu. Structural analysis shows that in 9 out of 10 of these compounds, the ions form one‐dimensional chains or ribbons stabilized by hydrogen bonds. Only in one compound are parallel planes present. In all the structures, there are charge‐assisted N+—H…X? hydrogen bonds, as well as weaker CAr+—H…X? and π+X? interactions. The structures can be divided into five types according to their hydrogen‐bond patterns. All the compounds undergo thermal decomposition at relatively high temperatures (150–300 °C) without melting. Four oxopyrimidinium salts containing a π+X?…π+ sandwich‐like structural motif exhibit luminescent properties.  相似文献   

17.
Carbon monoxide (CO) has recently been identified as a gaseous signaling molecule that exerts various salutary effects in mammalian pathophysiology. Photoactive metal carbonyl complexes (photoCORMs) are ideal exogenous candidates for more controllable and site‐specific CO delivery compared to gaseous CO. Along this line, our group has been engaged for the past few years in developing group‐7‐based photoCORMs towards the efficient eradication of various malignant cells. Moreover, several such complexes can be tracked within cancerous cells by virtue of their luminescence. The inherent luminecscent nature of some photoCORMs and the change in emission wavelength upon CO release also provide a covenient means to track the entry of the prodrug and, in some cases, both the entry and CO release from the prodrug. In continuation of the research circumscribing the development of trackable photoCORMs and also to graft such molecules covalently to conventional delivery vehicles, we report herein the synthesis and structures of three rhenium carbonyl complexes, namely, fac‐tricarbonyl[2‐(pyridin‐2‐yl)‐1,3‐benzothiazole‐κ2N ,N ′](4‐vinylpyridine‐κN )rhenium(I) trifluoromethanesulfonate, [Re(C7H7N)(C12H8N2S)(CO)3](CF3SO3), ( 1 ), fac‐tricarbonyl[2‐(quinolin‐2‐yl)‐1,3‐benzothiazole‐κ2N ,N ′](4‐vinylpyridine‐κN )rhenium(I) trifluoromethanesulfonate, [Re(C7H7N)(C16H10N2S)(CO)3](CF3SO3), ( 2 ), and fac‐tricarbonyl[1,10‐phenanthroline‐κ2N ,N ′](4‐vinylpyridine‐κN )rhenium(I) trifluoromethanesulfonate, [Re(C7H7N)(C12H8N2)(CO)3](CF3SO3), ( 3 ). In all three complexes, the ReI center resides in a distorted octahedral coordination environment. These complexes exhibit CO release upon exposure to low‐power UV light. The apparent CO release rates of the complexes have been measured to assess their comparative CO‐donating capacity. The three complexes are highly luminescent and this in turn provides a convenient way to track the entry of the prodrug molecules within biological targets.  相似文献   

18.
Copper(II) bis(4,4,4‐trifluoro‐1‐phenylbutane‐1,3‐dionate) complexes with pyridin‐2‐one (pyon), 3‐hydroxypyridine (hpy) and 3‐hydroxypyridin‐2‐one (hpyon) were prepared and the solid‐state structures of (pyridin‐2‐one‐κO )bis(4,4,4‐trifluoro‐3‐oxo‐1‐phenylbutan‐1‐olato‐κ2O ,O ′)copper(II), [Cu(C10H6F3O2)2(C5H5NO)] or [Cu(tfpb‐κ2O ,O ′)2(pyon‐κO )], (I), bis(pyridin‐3‐ol‐κO )bis(4,4,4‐trifluoro‐3‐oxo‐1‐phenylbutan‐1‐olato‐κ2O ,O ′)copper(II), [Cu(C10H6F3O2)2(C5H5NO)2] or [Cu(tfpb‐κ2O ,O ′)2(hpy‐κO )2], (II), and bis(3‐hydroxypyridin‐2‐one‐κO )bis(4,4,4‐trifluoro‐3‐oxo‐1‐phenylbutan‐1‐olato‐κ2O ,O ′)copper(II), [Cu(C10H6F3O2)2(C5H5NO2)2] or [Cu(tfpb‐κ2O ,O ′)2(hpyon‐κO )2], (III), were determined by single‐crystal X‐ray analysis. The coordination of the metal centre is square pyramidal and displays a rare example of a mutual cis arrangement of the β‐diketonate ligands in (I) and a trans‐octahedral arrangement in (II) and (III). Complex (II) presents the first crystallographic evidence of κO‐monodentate hpy ligation to the transition metal enabling the pyridine N atom to participate in a two‐dimensional hydrogen‐bonded network through O—H…N interactions, forming a graph‐set motif R 22(7) through a C—H…O interaction. Complex (III) presents the first crystallographic evidence of monodentate coordination of the neutral hpyon ligand to a metal centre and a two‐dimensional hydrogen‐bonded network is formed through N—H…O interactions facilitated by C—H…O interactions, forming the graph‐set motifs R 22(8) and R 22(7).  相似文献   

19.
In the complex salt [η6‐1‐chloro‐2‐(pyrrolidin‐1‐yl)benzene](η5‐cyclopentadienyl)iron(II) hexafluoridophosphate, [Fe(C5H5)(C10H12ClN)]PF6, (I), the complexed cyclopentadienyl and benzene rings are almost parallel, with a dihedral angle between their planes of 2.3 (3)°. In a related complex salt, (η5‐cyclopentadienyl){2‐[η6‐2‐(pyrrolidin‐1‐yl)phenyl]phenol}iron(II) hexafluoridophosphate, [Fe(C5H5)(C16H17NO)]PF6, (II), the analogous angle is 5.4 (1)°. In both complexes, the aromatic C atom bound to the pyrrolidine N atom is located out of the plane defined by the remaining five ring C atoms. The dihedral angles between the plane of these five ring atoms and a plane defined by the N‐bound aromatic C atom and two neighboring C atoms are 9.7 (8) and 5.6 (2)° for (I) and (II), respectively.  相似文献   

20.
The aurophilicity exhibited by AuI complexes depends strongly on the nature of the supporting ligands present and the length of the Au–element (Au—E) bond may be used as a measure of the donor–acceptor properties of the coordinated ligands. A binuclear iron–gold complex, [1,3‐bis(2,6‐diisopropylphenyl)imidazol‐2‐ylidene‐2κC2]dicarbonyl‐1κ2C‐(1η5‐cyclopentadienyl)gold(I)iron(II)(AuFe) benzene trisolvate, [AuFe(C5H5)(C27H36N2)(CO)2]·3C6H6, was prepared by reaction of K[CpFe(CO)2] (Cp is cyclopentadienyl) with (NHC)AuCl [NHC = 1,3‐bis(2,6‐diisopropylphenyl)imidazol‐2‐ylidene]. In addition to the binuclear complex, the asymmetric unit contains three benzene solvent molecules. This is the first example of a two‐coordinated Au atom bonded to an Fe and a C atom of an N‐heterocyclic carbene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号