首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 31 毫秒
1.
《Mathematische Nachrichten》2018,291(11-12):1859-1892
This paper is a continuation of our recent paper 8 . We will consider the semi‐linear Cauchy problem for wave models with scale‐invariant time‐dependent mass and dissipation and power non‐linearity. The goal is to study the interplay between the coefficients of the mass and the dissipation term to prove global existence (in time) of small data energy solutions assuming suitable regularity on the L2 scale with additional L1 regularity for the data. In order to deal with this L2 regularity in the non‐linear part, we will develop and employ some tools from Harmonic Analysis.  相似文献   

2.
In this article, we study the blow‐up of the damped wave equation in the scale‐invariant case and in the presence of two nonlinearities. More precisely, we consider the following equation: u t t ? Δ u + μ 1 + t u t = | u t | p + | u | q , in ? N × [ 0 , ) , with small initial data. For μ < N ( q ? 1 ) 2 and μ ∈ (0, μ?) , where μ? > 0 is depending on the nonlinearties' powers and the space dimension (μ? satisfies ( q ? 1 ) ( N + 2 μ ? ? 1 ) p ? 2 = 4 ), we prove that the wave equation, in this case, behaves like the one without dissipation (μ = 0 ). Our result completes the previous studies in the case where the dissipation is given by μ ( 1 + t ) β u t ; β > 1 , where, contrary to what we obtain in the present work, the effect of the damping is not significant in the dynamics. Interestingly, in our case, the influence of the damping term μ 1 + t u t is important.  相似文献   

3.
In the present article a, semilinear scale‐invariant wave equation with damping and mass is considered. The global (in time) existence of radial symmetric solutions in even spatial dimension n is proved by using weighted L ? L estimates, under the assumption that the multiplicative constants, which appear in the coefficients of damping and of mass terms, fulfill an interplay condition, which yields somehow a “wave‐like” model. In particular, combining this existence result with a recently proved blow‐up result, a suitable shift of Strauss exponent is proved to be the critical exponent for the considered model. Moreover, the still open part of a conjecture done by D'Abbicco‐Lucente‐Reissig is proved to be true in the massless case.  相似文献   

4.
In this paper we consider the non‐linear wave equation a,b>0, associated with initial and Dirichlet boundary conditions. We prove, under suitable conditions on α,β,m,p and for negative initial energy, a global non‐existence theorem. This improves a result by Yang (Math. Meth. Appl. Sci. 2002; 25 :825–833), who requires that the initial energy be sufficiently negative and relates the global non‐existence of solutions to the size of Ω. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper we study the blow‐up of solution of a mixed problem associated to a nonlinear wave equation with dissipative and source term in a bounded domain of . On a boundary portion of the domain we consider a non‐porous viscoelastic acoustic boundary conditions to a non‐locally reacting boundary.  相似文献   

6.
In this paper the degenerate parabolic system ut=u(uxx+av). vt=v(vxx+bu) with Dirichlet boundary condition is studied. For , the global existence and the asymptotic behaviour (α12) of solution are analysed. For , the blow‐up time, blow‐up rate and blow‐up set of blow‐up solution are estimated and the asymptotic behaviour of solution near the blow‐up time is discussed by using the ‘energy’ method. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
In this work, we consider a nonlinear coupled wave equations with initial‐boundary value conditions and nonlinear damping and source terms. Under suitable assumptions on the damping terms and source terms and initial data in the stable set, we obtain that the decay estimates of the energy function is exponential or polynomial by using Nakao's method. By using the energy method, we obtain the blow‐up result of solution with some positive or nonpositive initial energy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper we study well‐posedness of the damped nonlinear wave equation in Ω × (0, ∞) with initial and Dirichlet boundary condition, where Ω is a bounded domain in ?2; ω?0, ωλ1+µ>0 with λ1 being the first eigenvalue of ?Δ under zero boundary condition. Under the assumptions that g(·) is a function with exponential growth at the infinity and the initial data lie in some suitable sets we establish several results concerning local existence, global existence, uniqueness and finite time blow‐up property and uniform decay estimates of the energy. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
We shall derive some global existence results to semilinear wave equations with a damping coefficient localized near infinity for very special initial data in H×L2. This problem is dealt with in the two‐dimensional exterior domain with a star‐shaped complement. In our result, a power p on the non‐linear term |u|p is strictly larger than the two‐dimensional Fujita‐exponent. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, we consider the non‐linear wave equation a,b>0, associated with initial and Dirichlet boundary conditions. Under suitable conditions on α, m, and p, we give precise decay rates for the solution. In particular, we show that for m=0, the decay is exponential. This work improves the result by Yang (Math. Meth. Appl. Sci. 2002; 25 :795–814). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
This paper deals with the blow‐up phenomena for a class of fourth‐order nonlinear wave equations with a viscous damping term with Ω = (0,1) and α > 0. Here, f(s) is a given nonlinear smooth function. For 0 < α < p – 1, we prove that the blow‐up occurs in finite time for arbitrary positive initial energy and suitable initial data. This result extends the recent results obtained by Xu et al. (Applicable Analysis)(2013) and Chen and Lu (J. Math. Anal. Appl.)(2009). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
《Mathematische Nachrichten》2018,291(8-9):1216-1239
Unilateral problems related to the wave model subject to degenerate and localized nonlinear damping on a compact Riemannian manifold are considered. Our results are new and concern two main issues: (a) to prove the global well‐posedness of the variational problem; (b) to establish that the corresponding energy functional is not (uniformly) stable to equilibrium in general, namely, the energy does not converge to zero on the trajectory of every solution, even if a full linear damping is taken in place.  相似文献   

13.
This article addresses nonlinear wave equations with supercritical interior and boundary sources, and subject to interior and boundary damping. The presence of a nonlinear boundary source alone is known to pose a significant difficulty since the linear Neumann problem for the wave equation is not, in general, well‐posed in the finite‐energy space H1(Ω) × L2(?Ω) with boundary data in L2 due to the failure of the uniform Lopatinskii condition. Further challenges stem from the fact that both sources are non‐dissipative and are not locally Lipschitz operators from H1(Ω) into L2(Ω), or L2(?Ω). With some restrictions on the parameters in the model and with careful analysis involving the Nehari Manifold, we obtain global existence of a unique weak solution, and establish exponential and algebraic uniform decay rates of the finite energy (depending on the behavior of the dissipation terms). Moreover, we prove a blow up result for weak solutions with nonnegative initial energy.  相似文献   

14.
In this paper, we study the flow of a compressible (density‐gradient‐dependent) non‐linear fluid down an inclined plane, subject to radiation boundary condition. The convective heat transfer is also considered where a source term, similar to the Arrhenius type reaction, is included. The non‐dimensional forms of the equations are solved numerically and the competing effects of conduction, dissipation, heat generation and radiation are discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
We prove the following inclusion where WF* denotes the non‐quasianalytic Beurling or Roumieu wave front set, Ω is an open subset of $\mathbb {R}^n$, P is a linear partial differential operator with suitable ultradifferentiable coefficients, and Σ is the characteristic set of P. The proof relies on some techniques developed in the study of pseudodifferential operators in the Beurling setting. Some applications are also investigated.  相似文献   

16.
The paper is devoted to the study of a system of semilinear wave equations associated with the helical flows of Maxwell fluid. First, based on Faedo–Galerkin method and standard arguments of density corresponding to the regularity of initial conditions, we establish two local existence theorems of weak solutions. Next, we prove that any weak solutions with negative initial energy will blow up in finite time. Finally, we give a sufficient condition to guarantee the global existence and exponential decay of weak solutions via the construction of a suitable Lyapunov functional. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号