首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(ethylene‐bε‐caprolactone) (PE‐b‐PCL) diblock copolymers were synthesized by ring‐opening polymerization (ROP) of ε‐caprolactone (CL) with α‐hydroxyl‐ω‐methyl polyethylene (PE‐OH) as a macroinitiator and ammonium decamolybdate (NH4)8[Mo10O34] as a catalyst. Polymerization was conducted in bulk (130–150°C) with high yield (87–97%). Block copolymers with different compositions were obtained and characterized by 1H and 13C NMR, MALDI‐TOF, SAXS, and DSC. End‐group analysis by NMR and MALDI‐TOF indicates the formation of α‐hydroxyl‐ω‐methyl PE‐b‐PCL. The PE‐b‐PCL degradation was studied using thermogravimetric analysis (TGA) and alkaline hydrolysis. The PCL block was hydrolyzed by NaOH (4M), without any effect on the PE segment. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
3.
The crystallization of block copolymers (BCPs) under homogeneous and heterogeneous nucleation is currently well understood revealing the strong interplay of crystallization in competition to microphase separation. This article reports investigations on synthesis and crystallization processes in weakly interacting supramolecular pseudo‐BCPs, composed of poly(ε‐caprolactone) (PCL) and poly(isobutylene) (PIB) blocks, connected by a specifically interacting hydrogen bond (thymine/2,6‐diaminotriazine). Starting from ring opening polymerization of ε‐caprolactone, the use of “click”‐chemistry enabled the introduction of thymine endgroups onto PCL polymer, thus generating the fully thymine‐substituted pure PCLs ( 1a , 1b ) as judged via NMR and MALDI analysis. Physical mixing of 1a , 1b with a bivalent, bis(2,6‐diaminotriazine)‐containing molecule ( 2 ) generated the bivalent polymers BC1 and BC2 , whereas mixing of 1a or 1b with the 2,6‐diaminotriazine‐substituted PIB ( 3 ) generated the supramolecular pseudo‐BCPs BC3 and BC4 . Thermal investigations (DSC, Avrami analysis) revealed only minor changes in the crystallization behavior of BC1 – BC4 with Avrami exponents close to three, indicative of a confluence of the growing crystals during the crystallization process. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

4.
After (R)‐12‐hydroxystearic acid (HSA) was mixed at 100 °C with the castor oil‐modified poly(ε‐caprolactone) (CO‐PCL) prepared by the ring‐opening polymerization of ε‐caprolactone in the presence of castor oil, the mixture was gradually cooled to room temperature to give a solidified CO‐PCL/HSA composite. The CO‐PCL/HSA sample showed an exothermic peak at around 67–71 °C which was lower than the melting point of HSA (76.8 °C), indicating the formation of mesogenic HSA aggregates. The rheological measurement of the CO‐PCL/HSA revealed the formation of HSA organogel at around 67–55 °C during the cooling process from the melt. Furthermore, the polarized and normal optical microscopic analyses of CO‐PCL/HSA on the cooling stage revealed that anisotropic fibrous materials are formed at around 60 °C and then the fibrous network propagated over the matrix polymer. The flexural modulus and storage modulus of the CO‐PCL/HSA composite increased with increasing HSA content. The CO‐PCL/HSA composite annealed at 60 °C for 2 h on the cooling process had a higher flexural and storage modulus than the sample without annealing. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1281–1289, 2010  相似文献   

5.
Monofunctional polylactones were prepared by Bu2Sn(OMe)2‐initiated ring‐opening polymerization of ε‐caprolactone (εCL) followed by acylation with bromoacetylbromide. Telechelic polylactones and polylactides were prepared via ring‐expansion polymerization with 2,2‐dibutyl‐2‐stanna‐1,3‐dioxepane (DSDOP) or 2,2‐dibutyl‐2‐stanna‐pentaoxacyclotridecane (Bu2SnTEG) as cyclic initiator. In situ combination of the polymerization with condensation by means of bromoacetylbromide yielded polylactones having bromoacetate endgroups. These endgroups were subjected to nucleophilic substitution with 3‐mercaptopropyl trimethoxysilane (3‐MPTMS). Analogous experiments were conducted with dl‐lactide. The telechelic trimethoxysilyl‐endcapped polylactones were characterized by viscosity, 1H and 13C NMR‐spectroscopy, and MALDI‐TOF mass spectrometry. The mass spectra revealed small amounts of cyclic oligolactones as byproducts in all samples. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3667–3674, 2005  相似文献   

6.
A series of tri‐components copolymers with different molar ratios were synthesized via bulk ring‐opening copolymerization of trimethylene carbonate (TMC), L ‐lactide (LLA), and ε‐caprolactone (ε‐CL), using stannous octoate as catalyst. The sequence structure of the tercopolymer chain was characterized by 1H and 13C nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR), and gel permeation chromatography (GPC). The results showed that although block sequence of the corresponding monomers still existed in the tercopolymer chain, the random tercopolymers were ultimately obtained due to the transesterification during polymerization. For the samples TP1 and TP2, longer sequence of LLA existed in the molecular chains. The thermal properties of tercopolymers were investigated by differential scanning calorimetry (DSC) and the mechanical properties of the resulting copolymers were studied by using a tensile tester. The results indicated that the properties of these copolymers could be adjusted by changing the compositions of the copolymers. The resulting tercopolymers are expected to have potential uses as nerve regeneration and other biomedicine materials. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
8.
Form‐stable resorbable networks are prepared by gamma irradiating trimethylene carbonate (TMC)‐ and ε‐caprolactone (CL)‐based (co)polymer films. To evaluate their suitability for biomedical applications, their physical properties and erosion behavior are investigated. Homopolymer and copolymer networks that are amorphous at room temperature are flexible and rubbery with elastic moduli ranging from 1.8 ± 0.3 to 5.2 ± 0.4 MPa and permanent set values as low as 0.9% strain. The elastic moduli of the semicrystalline networks are higher and range from 61 ± 3 to 484 ± 34 MPa. The erosion behavior of (co)polymer networks is investigated in vitro using macrophage cultures, and in vivo by subcutaneous implantation in rats. In macrophage cultures, as well as upon implantation, a surface erosion process is observed for the amorphous (co)polymer networks, while an abrupt decrease in the rate and a change in the nature of the erosion process are observed with increasing crystallinity. These resorbable and form‐stable networks with tuneable properties may find application in a broad range of biomedical applications.

  相似文献   


9.
Fluorescein isothiocyanate (FITC), a fluorescent probe, is coupled to amphiphilic monomethoxy poly(ethylene glycol)‐block‐poly(ε‐caprolactone) (mPEG‐PCL) copolymers. FITC‐labeled mPEG‐PCL copolymers self‐assemble into micelles through the solvent evaporation method. The cellular internalization is examined using fluorescence microscopy on incubation of NIH‐3T3 fibroblasts with micelles or free FITC solution. The effect of the hydrophilic/hydrophobic ratio on the endocytosis mechanisms is evaluated by fluorescence microscopy on culturing of human hepatoblastoma cells and human umbilical vein endothelial cells, individually, mixed with the micelles holding the same parameters including micelle size, shape, and surface charges.

  相似文献   


10.
New amphiphilic graft copolymers that have a poly(ε‐caprolactone) (PCL) biodegradable hydrophobic backbone and poly(4‐vinylpyridine) (P4VP) or poly(2‐(N,N‐dimethylamino)ethyl methacrylate) (PDMAEMA) hydrophilic side chains have been prepared by anionic polymerization of the corresponding 4VP and DMAEMA monomers using a PCL‐based macropolycarbanion as initiator. The water solubility of these amphiphilic copolymers is improved by quaternization, which leads to fully water‐soluble cationic copolymers that give micellar aggregates in deionized water with diameters ranging from 65 to 125 nm. In addition, to improve the hydrophilicity of PCL‐g‐P4VP, grafting of poly(ethylene glycol) (PEG) segments has been carried out to give a water‐soluble double grafted PCL‐g‐(P4VP;PEG) terpolymer.

  相似文献   


11.
Well‐defined amphiphilic A8B4 miktoarm star copolymers with eight poly(ethylene glycol) chains and four poly(ε‐caprolactone) arms (R‐8PEG‐4PCL) were prepared using “click” reaction strategy and controlled ring‐opening polymerization (CROP). First, multi‐functional precursor (R‐8N3‐4OH) with eight azides and four hydroxyls was synthesized based on the derivatization of resorcinarene. Then eight‐PEG‐arm star polymer (R‐8PEG‐4OH) was prepared through “click” reaction of R‐8N3‐4OH with pre‐synthesized alkyne‐terminated monomethyl PEG (mPEG‐A) in the presence of CuBr/N,N,N′,N″,N″′‐ pentamethyldiethylenetriamine (PMDETA) in DMF. Finally, R‐8PEG‐4OH was used as tetrafunctional macroinitiator to prepare resorcinarene‐centered A8B4 miktoarm star copolymers via CROP of ε‐caprolactone utilizing Sn(Oct)2 as catalyst at 100 °C. These miktoarm star copolymers could self‐assemble into spherical micelles in aqueous solution with resorcinarene moieties on the hydrophobic/hydrophilic interface, and the particle sizes could be controlled by the ratio of PCL to PEG. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2824–2833.  相似文献   

12.
Per‐2,3‐acetyl‐β‐cyclodextrin with seven primary hydroxyl groups was synthesized by selective modification and used as multifunctional initiator for the ring‐opening polymerization of ε‐caprolactone (CL). Well‐defined β‐cyclodextrin‐centered seven‐arm star poly(ε‐caprolactone)s (CDSPCLs) with narrow molecular weight distributions (≤1.15) have been successfully prepared in the presence of Sn(Oct)2 at 120 °C. The molecular weight of CDSPCLs was characterized by end group 1H NMR analyses and size‐exclusion chromatography (SEC), which could be well controlled by the molar ratio of the monomer to the initiator. Furthermore, amphiphilic seven‐arm star poly(ε‐caprolactone‐b‐ethylene glycol)s (CDSPCL‐b‐PEGs) were synthesized by the coupling reaction of CDSPCLs with carboxyl‐terminated mPEGs. 1H NMR and SEC analyses confirmed the expected star block structures. Differential scanning calorimetry analyses suggested that the melting temperature (Tm), the crystallization temperature (Tc), and the crystallinity degree (Xc) of CDSPCLs all increased with the increasing of the molecular weight, and were lower than that of the linear poly(ε‐caprolactone). As for CDSPCL‐b‐PEGs, the Tc and Tm of the PCL blocks were significantly influenced by the PEG segments in the copolymers. Moreover, these amphiphilic star block copolymers could self‐assemble into spherical micelles with the particle size ranging from 10 to 40 nm. Their micellization behaviors were characterized by dynamic light scattering and transmission electron microscopy. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6455–6465, 2008  相似文献   

13.
Ex vivo expansion of hematopoietic stem cells (HSCs) with most current methods can hardly satisfy clinical application requirement. While in vivo, HSCs efficiently self‐renew in niche where they interact with 3D extracellular matrix and stromal cells. Therefore, co‐cultures of CD34+ cells and mesenchyme stem cells derived from human amniotic membrane (hAMSCs) on the basis of biomimetic macroporous three‐dimensional (3D) poly(ε‐caprolactone) (PCL) scaffolds are developed, where scaffolds and hAMSCs are applied to mimic structural and cellular microenvironment of HSCs. The influence of scaffolds, feeder cells, and contact manners on expansion and stemness maintenance of CD34+ cells is investigated in this protocol. Biomimetic scaffolds‐dependent co‐cultures of CD34+ cells and hAMSCs can effectively promote the expansion of CD34+ cells; meanwhile, indirect contact is superior to direct contact. The combination of biomimetic scaffolds and hAMSCs represents a new strategy for achieving clinical‐scale ex vivo expansion of CD34+ cells.

  相似文献   


14.
Summary: Star‐shaped hydroxy‐terminated poly(ε‐caprolactone)s (ssPCL), with arms of different lengths, were obtained by ring‐opening polymerization (ROP) of ε‐caprolactone initiated by pentaerythritol, and were condensed with α‐methyl‐ω‐(3‐carboxypropionyloxy)‐poly(ethylene oxide)s ( = 550–5 000) to afford four‐armed PCL‐PEO star diblock copolymers (ssPCL‐PEO). The polymers were characterized by 1H and 13C NMR spectroscopy and size‐exclusion chromatography (SEC). The melting behavior of ssPCLs was studied by differential scanning calorimetry (DSC). X‐ray diffraction and DSC techniques were used to investigate the crystalline phases of ssPCL‐PEOs.

The part of the synthesis of four‐armed star‐shaped diblock poly(ε‐caprolactone)‐poly(ethylene oxide) copolymers as described.  相似文献   


15.
Zinc complexes supported by tertiary 1,3,5‐triazapenta‐1,3‐dienate ligand (L1) and N ‐benzoyl‐N′ ‐arylbenzamidinate [aryl =2,6‐diisopropylphenyl (L2), phenyl (L3)] ligands have been synthesized and characterized. The reaction of L1H with ZnEt2 affords a mononuclear zinc complex [L1ZnEt] ( 1 ) in good yield. Tetra nuclear zinc complex [(L1)2Zn4O(OAc)4] ( 2 ) is prepared by treating L1H with one equivalent of Zn(OAc)2 in toluene. Further, dinuclear zinc complexes [L2ZnEt]2 ( 3 ) and [L3ZnEt]2 ( 4 ) are obtained in good yields from L2H and L3H with ZnEt2 in toluene respectively. The complexes 1–4 have been characterized by 1H/13C NMR spectroscopy and single crystal X‐ray diffraction studies. All of the complexes have been explored for their catalytic activity toward the ring‐opening polymerization (ROP) of ε ‐caprolactone. It has been found that complex 1 is an active catalyst for the polymerization of ε ‐caprolactone in presence of a cocatalyst benzyl alcohol (BnOH). While complex 2 is as active as 1 there is no need for a cocatalyst for the polymerization to proceed. Dinuclear zinc complexes 3 and 4 show very high activity for the ROP of ε ‐caprolactone (CL) and rac ‐lactide (LA) without requiring a cocatalyst. The resultant polymers are found to have very high molecular weight (M n = 296 X 103 g mol−1) and relatively narrow polydispersity index compared to 1 and 2 .  相似文献   

16.
Novel thermoplastic elastomers based on multi‐block copolymers of poly(l ‐lysine) (PLL), poly(N‐ε‐carbobenzyloxyl‐l ‐lysine) (PZLL), poly(ε‐caprolactone) (PCL), and poly(ethylene glycol) (PEG) were synthesized by combination of ring‐opening polymerization (ROP) and chain extension via l ‐lysine diisocyanate (LDI). SEC and 1H NMR were used to characterize the multi‐block copolymers, with number‐average molecular weights between 38,900 and 73,400 g/mol. Multi‐block copolymers were proved to be good thermoplastic elastomers with Young's modulus between 5 and 60 MPa and tensile strain up to 1300%. The PLL‐containing multi‐block copolymers were electrospun into non‐woven mats that exhibited high surface hydrophilicity and wettability. The polypeptide–polyester materials were biocompatible, bio‐based and environment‐friendly for promising wide applications. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3012–3018  相似文献   

17.
This study reports the structural transition of electrospun poly(ε‐caprolactone) (PCL)/poly[(propylmethacryl‐heptaisobutyl‐polyhedral oligomeric silsesquioxane)‐co‐(methyl meth­acrylate)] (POSS‐MMA) blends, from PCL‐rich fibers, to bicontinuous PCL core/POSS‐MMA shell fibers, to POSS‐MMA‐rich fibers with a discontinuous PCL inner phase. A ternary phase diagram depicting the electrospinnability of PCL/POSS‐MMA solutions is constructed by evaluating the morphological features of fibers electrospun from solutions with various concentrations and PCL/POSS‐MMA blend ratios. X‐ray diffraction, Raman spectroscopy, and differential scanning calorimetry are further used to characterize the electrospun PCL/POSS‐MMA hybrid fibers. These physicochemical characterization results are thoroughly discussed to understand the internal structures of the hybrid fibers, which are directly correlated to the phase separation behavior of the electrospun solutions. The current study provides further insight into the complex phase behavior of POSS‐copolymer‐based systems, which hold great potential for a broad spectrum of biomedical applications.

  相似文献   


18.
Various composites have been proposed in the literature for the fabrication of bioscaffolds for bone tissue engineering. These materials include poly(ε‐caprolactone) (PCL) with hydroxyapatite (HA). Since the biomaterial acts as the medium that transfers mechanical signals from the body to the cells, the fundamental properties of the biomaterials should be characterized. Furthermore, in order to control the processing of these materials into scaffolds, the characterization of the fundamental properties is also necessary. In this study, the physical, thermal, mechanical, and viscoelastic properties of the PCL‐HA micro‐ and nano‐composites were characterized. Although the addition of filler particles increased the compressive modulus by up to 450%, the thermal and viscoelastic properties were unaffected. Furthermore, although the presence of water plasticized the polymer, the viscoelastic behavior was only minimally affected. Testing the composites under various conditions showed that the addition of HA can strengthen PCL without changing its viscoelastic response. The results found in this study can be used to further understand and approximate the time‐dependent behavior of scaffolds for bone tissue engineering. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
The quasi‐living cationic copolymerization of 3,3‐bis(chloromethyl)oxetane (BCMO) and ε‐caprolactone (ε‐CL), using boron trifluoride etherate as catalyst and 1,4‐butanediol as coinitiator, was investigated in methylene chloride at 0°C. The resulting hydroxyl‐ended copolymers exhibit a narrow molecular weight polydispersity and a functionality of about 2. The reactivity ratios of BCMO (0.26) and ε‐CL (0.47), and the Tg of the copolymers, indicate their statistical character. The synthesis of poly(3,3‐bis(azidomethyl)oxetane‐co‐ε‐caprolactone) from poly(BCMO‐co‐ε‐CL) via the substitution of the chlorine atoms by azide groups, using sodium azide in DMSO at 110°C, occurs without any degradation, but the copolymers decompose at about 240°C. All polymers were characterized by vapor pressure osmometry or steric exclusion chromatography, 1H‐NMR and FTIR spectroscopies, and DSC. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1027–1039, 1999  相似文献   

20.
Summary: The reaction of triphosgene with poly(ethylene glycol) yielded poly(ethylene glycol) dichloroformate. This difunctional cross‐linker was allowed to react with poly(ε‐caprolactone) bearing carbanionic sites obtained by activation with lithium diisopropylamide. The reaction resulted in the cross‐linking of poly(ε‐caprolactone) chains by poly(ethylene glycol) segments, giving copolymer networks that gel in both organic and aqueous media.

Schematic of the PCL‐g‐PEG copolymers synthesized here.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号