首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Binary and multicomponent intermetallic compounds based on lithium and p‐elements of Groups III–V of the Periodic Table are useful as modern electrode materials in lithium‐ion batteries. However, the interactions between the components in the Li–Ge–B ternary system have not been reported. The structure of tetralithium digermanium boride, Li4Ge2B, exhibits a new structure type, in the noncentrosymmetric space group R3m, in which all the Li, Ge and B atoms occupy sites with 3m symmetry. The title structure is closely related to the Mo2B5 and Li5Sn2 structure types, which crystallize in the centrosymmetric space group Rm. All the atoms in the title structure are coordinated by rhombic dodecahedra (coordination number = 14), similar to the atoms in related structures. According to electronic structure calculations using the tight‐binding–linear muffin‐tin orbital–atomic spheres approximation (TB–LMTO–ASA) method, strong covalent Ge—Ge and Ge—B interactions were established.  相似文献   

2.
Li–B–C alloys have attracted much interest because of their potential use in lithium‐ion batteries and superconducting materials. The formation of the new compound LiBC3 [lithium boron tricarbide; own structure type, space group P m 2, a = 2.5408 (3) Å and c = 7.5989 (9) Å] has been revealed and belongs to the graphite‐like structure family. The crystal structure of LiBC3 presents hexagonal graphene carbon networks, lithium layers and heterographene B/C networks, alternating sequentially along the c axis. According to electronic structure calculations using the tight‐binding linear muffin‐tin orbital‐atomic spheres approximations (TB–LMTO–ASA) method, strong covalent B—C and C—C interactions are established. The coordination polyhedra for the B and C atoms are trigonal prisms and for the Li atoms are hexagonal prisms.  相似文献   

3.
Magnesium alloys are the basis for the creation of light and ultra‐light alloys. They have attracted attention as potential materials for the accumulation and storage of hydrogen, as well as electrode materials in metal‐hydride and magnesium‐ion batteries. The search for new metal hydrides has involved magnesium alloys with rare‐earth transition metals and doped by p‐ or s‐elements. The synthesis and characterization of a new quaternary carbide, namely dimagnesium lithium aluminium carbide, Mg1.52Li0.24Al0.24C0.86, belonging to the family of hexagonal close‐packed (hcp) structures, are reported. The title compound crystallizes with hexagonal symmetry (space group Pm2), where two sites with m2 symmetry and one site with 3m. symmetry are occupied by an Mg/Li statistical mixture (in Wyckoff position 1a), an Mg/Al statistical mixture (in position 1d) and C atoms (2i). The cuboctahedral coordination is typical for Mg/Li and Mg/Al, and the C atom is enclosed in an octahedron. Electronic structure calculations were used for elucidation of the ability of lithium or aluminium to substitute magnesium, and evaluation of the nature of the bonding between atoms. The presence of carbon in the carbide phase improves the corrosion resistance of the Mg1.52Li0.24Al0.24C0.86 alloy compared to the ternary Mg1.52Li0.24Al0.24 alloy and Mg.  相似文献   

4.
The series of RE5Li2Sn7 (RE = Ce–Sm) compounds were synthesized by high‐temperature reactions and structurally characterized by single‐crystal X‐ray diffraction. The compounds are pentacerium dilithium heptastannide, Ce5Li1.97Sn7.03, pentapreseodymium dilithium heptastannide, Pr5Li1.98Sn7.02, pentaneodymium dilithium heptastannide, Nd5Li1.99Sn7.01, and pentasamarium dilithium heptastannide, Sm5Li2Sn7. All five compounds crystallize in the chiral orthorhombic space group P212121 (No. 19), which is relatively uncommon among intermetallic phases. The structure belongs to the Ce5Li2Sn7 structure type (Pearson symbol oP56), with 14 unique atoms in the asymmetric unit. Minor compositional variations exist, due to the mixed occupancy of Li and Sn atoms at one of the Li sites. The small occupational disorder is most evident for RE5Li2−xSn7+x (RE = Ce, Pr; x≃ 0.03), while the structure of Nd5Li2Sn7 and Sm5Li2Sn7 show no apparent disorder.  相似文献   

5.
The ternary germanide Mg5.57Ni16Ge7.43 (cubic, space group Fmm, cF116) belongs to the structural family based on the Th6Mn23-type. The Ge1 and Ge2 atoms fully occupy the 4a (mm symmetry) and 24d (m.mm) sites, respectively. The Ni1 and Ni2 atoms both fully occupy two 32f sites (.3m symmetry). The Mg/Ge statistical mixture occupies the 24e site with 4m.m symmetry. The structure of the title compound contains a three-core-shell cluster. At (0,0,0), there is a Ge1 atom which is surrounded by eight Ni atoms at the vertices of a cube and consequently six Mg atoms at the vertices of an octahedron. These surrounded eight Ni and six Mg atoms form a [Ge1Ni8(Mg/Ge)6] rhombic dodecahedron with a coordination number of 14. The [GeNi8(Mg/Ge)6] rhombic dodecahedron is encapsulated within the [Ni24] rhombicuboctahedron, which is again encapsulated within an [Ni32(Mg/Ge)24] pentacontatetrahedron; thus, the three-core-shell cluster [GeNi8(Mg/Ge)6@Ni24@Ni32(Mg/Ge)24] results. The pentacontatetrahedron is a new representative of Pavlyuk's polyhedra group based on pentagonal, tetragonal and trigonal faces. The dominance of the metallic type of bonding between atoms in the Mg5.57Ni16Ge7.43 structure is confirmed by the results of the electronic structure calculations. The hydrogen sorption capacity of this intermetallic at 570 K reaches 0.70 wt% H2.  相似文献   

6.
The ternary phase hexacerium tricosacadmium telluride, Ce6Cd23Te, was synthesized by a high‐temperature reaction of the elements in sealed Nb ampoules and was structurally characterized by powder and single‐crystal X‐ray diffraction. The structure, established from single‐crystal X‐ray diffraction methods, is isopointal with the Zr6Zn23Si structure type (Pearson symbol cF 120, cubic space group Fm m ), a filled version of the Th6Mn23 structure with the same space group and Pearson symbol cF 116. Though no Cd‐containing rare‐earth metal binaries are known to form with this structure, it appears that the addition of small amounts of a p‐block element allows the formation of such interstitially stabilized ternary compounds. Temperature‐dependent direct current (dc) magnetization measurements suggest local‐moment magnetism arising from the Ce3+ ground state, with possible valence fluctuations at low temperature, inferred from the deviations from the Curie–Weiss law.  相似文献   

7.
A ternary derivative of Li3Bi with the composition Li3–xyInxBi (x ? 0.14, y ? 0.29) was produced by a mixed In+Bi flux approach. The crystal structure adopts the space group Fdm (No. 227), with a = 13.337 (4) Å, and can be viewed as a 2 × 2 × 2 superstructure of the parent Li3Bi phase, resulting from a partial ordering of Li and In in the tetrahedral voids of the Bi fcc packing. In addition to the Li/In substitutional disorder, partial occupation of some Li sites is observed. The Li deficiency develops to reduce the total electron count in the system, counteracting thereby the electron doping introduced by the In substitution. First‐principles calculations confirm the electronic rationale of the observed disorder.  相似文献   

8.
Two new compounds, namely cubic tricaesium lithium dizinc tetrakis(tetraoxotungstate), Cs3LiZn2(WO4)4, and tetragonal trirubidium dilithium gallium tetrakis(tetraoxomolybdate), Rb3Li2Ga(MoO4)4, belong to the structural family of Cs6Zn5(MoO4)8 (space group I 3d , Z = 4), with a partially incomplete (Zn5/61/6) position. In Cs3LiZn2(WO4)4, this position is fully statistically occupied by (Zn2/3Li1/3), and in Rb3Li2Ga(MoO4)4, the 2Li + Ga atoms are completely ordered in two distinct sites of the space group I 2d (Z = 4). In the same way, the crystallographically equivalent A + cations (A = Cs, Rb) in Cs6Zn5(MoO4)8, Cs3LiZn2(WO4)4 and isostructural A 3LiZn2(MoO4)4 and Cs3LiCo2(MoO4)4 are divided into two sites in Rb3Li2Ga(MoO4)4, as in other isostructural A 3Li2R (MoO4)4 compounds (AR = TlAl, RbAl, CsAl, CsGa, CsFe). In the title structures, the WO4 and (Zn,Li)O4 or LiO4, GaO4 and MoO4 tetrahedra share corners to form open three‐dimensional frameworks with the caesium or rubidium ions occupying cuboctahedral cavities. The tetrahedral frameworks are related to that of mayenite 12CaO·7Al2O3 and isotypic compounds. Comparison of isostructural Cs3M Zn2(MoO4)4 (M = Li, Na, Ag) and Cs6Zn5(MoO4)8 shows a decrease of the cubic lattice parameter and an increase in thermal stability with the filling of the vacancies by Li+ in the Zn position of the Cs6Zn5(MoO4)8 structure, while filling of the cation vacancies by larger Na+ or Ag+ ions plays a destabilizing role. The series A 3Li2R (MoO4)4 shows second harmonic generation effects compatible with that of β′‐Gd2(MoO4)3 and may be considered as nonlinear optical materials with a modest nonlinearity.  相似文献   

9.
Phase Relations in the System LiGa? Sn and the Crystal Structures of the Intermediate Compounds LiGaSn and Li2Ga2Sn The quasibinary system LiGa? Sn contains the intermediate ternary phases Li7Ga7Sn3, Li2Ga2Sn, Li5Ga5Sn3, Li3Ga3Sn2 and LiGaSn. Single crystals of LiGaSn (a = 632.9(4) pm, Fd3m, Z = 4), Li3Ga3Sn2 (a = 445.4(3), c = 1 090.0(2) pm, hP*), Li5Ga5Sn3 (a = 447.0(4), c = 4 220.0(9) pm, hP*) and Li2Ga2Sn (a = 441.1(2), c = 2 164.5(7) pm, P63/mmc, Z = 4) have been grown from the melt. The crystal structures of LiGaSn and Li2Ga2Sn have been determined by single crystal X-ray methods (R = 0.029 bzw. 0.107 respectively). The crystal structure of LiGaSn contains a sphalerite-type Ga/Sn-arrangement, the Ga/Sn-arrangement of Li2Ga2Sn corresponds to a stacking variant of the wurtzite- and sphalerite-type. The compounds can be classified in terms of the Zintl concept.  相似文献   

10.
A new Cu3Au‐type ternary phase (τ phase) is found in the AuPd‐rich part of the Au–In–Pd system. It has a broad homogeneity range based on extensive (Pd,Au) and (In,Au) replacement, with the composition varying between Au17.7In25.3Pd57.0 and Au50.8In16.2Pd33.0. The occupancies of the crystallographic positions were studied by single‐crystal X‐ray diffraction for three samples of different composition. The sites with mm symmetry are occupied by atoms with a smaller scattering power than the atoms located on 4/mmm sites. Two extreme structure models were refined. Within the first, the occupation type changes from (Au,In,Pd)3(Pd,In) to (Au,Pd)3(In,Pd,Au) with an increase in the Au gross content. For the second model, the occupation type (Au,In,Pd)3(Pd,Au) remains essentially unchanged for all Au concentrations. Although the diffraction data do not allow the choice of one of these models, the latter model, where Au substitutes In on 4/mmm sites, seems to be preferable, since it agrees with the fact that the homogeneity range of the τ phase is inclined to the Au corner and provides the same occupation type for all the studied samples of different compositions.  相似文献   

11.
A new ternary dithulium hexacobalt icosastannide, Tm2.22Co6Sn20, and a new quaternary thulium dilithium hexacobalt icosastannide, TmLi2Co6Sn20, crystallize as disordered variants of the binary cubic Cr23C6 structure type (cF116). 48 Sn atoms occupy sites of m.m2 symmetry, 32 Sn atoms sites of .3m symmetry, 24 Co atoms sites of 4m.m symmetry, eight Li (or Tm in the case of the ternary phase) atoms sites of symmetry and four Tm atoms sites of symmetry. The environment of one Tm atom is an 18‐vertex polyhedron and that of the second Tm (or Li) atom is a 16‐vertex polyhedron. Tetragonal antiprismatic coordination is observed for the Co atoms. Two Sn atoms are enclosed in a heavily deformed bicapped hexagonal prism and a monocapped hexagonal prism, respectively, and the environment of the third Sn atom is a 12‐vertex polyhedron. The electronic structures of both title compounds were calculated using the tight‐binding linear muffin‐tin orbital method in the atomic spheres approximation (TB–LMTO–ASA). Metallic bonding is dominant in these compounds, but the presence of Sn—Sn covalent dumbbells is also observed.  相似文献   

12.
The X‐ray crystal structure of tris[N‐(2‐hydroxyethyl)‐2,2′‐iminodiethanolato]tris(2,2′,2′′‐nitrilotriethanolato)tetrairon(II)triiron(III) bis(perchlorate), [Fe7(C6H12NO3)3(C6H13NO3)3](ClO4)2 or [Fe7(tea)3(tea‐H)3](ClO4)2 (tea‐H3 is triethanolamine), is known from the literature [Liu et al. (2008). Z. Anorg. Allg. Chem. 634 , 778–783] as a heptanuclear coordination cluster. The space group was given as I213 and is reinvestigated in the present study. We find a new space‐group symmetry of Pa and could detect O—H hydrogens, which were missing in the original publication. Consequences on the Fe oxidation states are investigated with the bond‐valence method, resulting in a mixed‐valence core of four FeII and three FeIII centres. Symmetry relationships between the two space groups and the average supergroup Ia are discussed in detail.  相似文献   

13.
Single crystals of an Li-stuffed, Al- and Ga-stabilized garnet-type solid-state electrolyte material, Li7La3Zr2O12 (LLZO), have been analysed using single-crystal X-ray diffraction to determine the pristine structural state immediately after synthesis via ceramic sintering techniques. Hydrothermal treatment at 150 °C for 28 d induces a phase transition in the Al-stabilized compound from the commonly observed cubic Iad structure to the acentric I3d subtype. LiI ions at the interstitial octahedrally (4 + 2-fold) coordinated 48e site are most easily extracted and AlIII ions order onto the tetrahedral 12a site. Deep hydration induces a distinct depletion of LiI at this site, while the second tetrahedral site, 12b, suffers only minor LiI loss. Charge balance is maintained by the incorporation of HI, which is bonded to an O atom. Hydration of Ga-stabilized LLZO induces similar effects, with complete depletion of LiI at the 48e site. The LiI/HI exchange not only leads to a distinct increase in the unit-cell size, but also alters some bonding topology, which is discussed here.  相似文献   

14.
Isoguanine, an analogue of guanine, is of intrinsic interest as a noncanonical nucleobase. The crystal structure of isoguaninium chloride (systematic name: 6‐amino‐2‐oxo‐1H,7H‐purin‐3‐ium chloride), C5H6N5O+·Cl, has been determined by single‐crystal X‐ray diffraction. Structure analysis was supported by electrostatic interaction energy (Ees) calculations based on charge density reconstructed with the UBDB databank. In the structure, two kinds of molecular tapes are observed, one parallel to (010) and the other parallel to (50). The tapes are formed by dimers of isoguaninium cations interacting with chloride anions. Ees analysis indicates that cations in one kind of tape are oriented so as to minimize repulsive electrostatic interactions.  相似文献   

15.
Hydrazone derivatives exhibit a wide range of biological activities, while pyrazolo[3,4‐b]quinoline derivatives, on the other hand, exhibit both antimicrobial and antiviral activity, so that all new derivatives in these chemical classes are potentially of value. Dry grinding of a mixture of 2‐chloroquinoline‐3‐carbaldehyde and 4‐methylphenylhydrazinium chloride gives (E)‐1‐[(2‐chloroquinolin‐3‐yl)methylidene]‐2‐(4‐methylphenyl)hydrazine, C17H14ClN3, (I), while the same regents in methanol in the presence of sodium cyanoborohydride give 1‐(4‐methylphenyl)‐4,9‐dihydro‐1H‐pyrazolo[3,4‐b]quinoline, C17H15N3, (II). The reactions between phenylhydrazinium chloride and either 2‐chloroquinoline‐3‐carbaldehyde or 2‐chloro‐6‐methylquinoline‐3‐carbaldehyde give, respectively, 1‐phenyl‐1H‐pyrazolo[3,4‐b]quinoline, C16H11N3, (III), which crystallizes in the space group Pbcn as a nonmerohedral twin having Z′ = 3, or 6‐methyl‐1‐phenyl‐1H‐pyrazolo[3,4‐b]quinoline, C17H13N3, (IV), which crystallizes in the space group R. The molecules of compound (I) are linked into sheets by a combination of N—H…N and C—H…π(arene) hydrogen bonds, and the molecules of compound (II) are linked by a combination of N—H…N and C—H…π(arene) hydrogen bonds to form a chain of rings. In the structure of compound (III), one of the three independent molecules forms chains generated by C—H…π(arene) hydrogen bonds, with a second type of molecule linked to the chains by a second C—H…π(arene) hydrogen bond and the third type of molecule linked to the chain by multiple π–π stacking interactions. A single C—H…π(arene) hydrogen bond links the molecules of compound (IV) into cyclic centrosymmetric hexamers having (S6) symmetry, which are themselves linked into a three‐dimensional array by π–π stacking interactions.  相似文献   

16.
As a function of temperature, the hexamethylenetetramine–2‐methylbenzoic acid (1/2) cocrystal, C6H12N4·2C8H8O2, undergoes a reversible structural phase transition. The orthorhombic high‐temperature phase in the space group Pccn has been studied in the temperature range between 165 and 300 K. At 164 K, a t2 phase transition to the monoclinic subgroup P21/c space group occurs; the resulting twinned low‐temperature phase was investigated in the temperature range between 164 and 100 K. The domains in the pseudomerohedral twin are related by a twofold rotation corresponding to the matrix (100/00/00). Systematic absence violations represent a sensitive criterium for the decision about the correct space‐group assignment at each temperature. The fractional volume contributions of the minor twin domain in the low‐temperature phase increases in the order 0.259 (2) → 0.318 (2) → 0.336 (2) → 0.341 (3) as the temperature increases in the order 150 → 160 → 163 → 164 K. The transformation occurs between the nonpolar point group mmm and the nonpolar point group 2/m, and corresponds to a ferroelastic transition or to a t2 structural phase transition. The asymmetric unit of the low‐temperature phase consists of two hexamethylenetetramine molecules and four molecules of 2‐methylbenzoic acid; it is smaller by a factor of 2 in the high‐temperature phase and contains two half molecules of hexamethylenetetramine, which sit across twofold axes, and two molecules of the organic acid. In both phases, the hexamethylenetetramine residue and two benzoic acid molecules form a three‐molecule aggregate; the low‐temperature phase contains two of these aggregates in general positions, whereas they are situated on a crystallographic twofold axis in the high‐temperature phase. In both phases, one of these three‐molecule aggregates is disordered. For this disordered unit, the ratio between the major and minor conformer increases upon cooling from 0.567 (7):0.433 (7) at 170 K via 0.674 (6):0.326 (6) and 0.808 (5):0.192 (5) at 160 K to 0.803 (6):0.197 (6) and 0.900 (4):0.100 (4) at 150 K, indicating temperature‐dependent dynamic molecular disorder. Even upon further cooling to 100 K, the disorder is retained in principle, albeit with very low site occupancies for the minor conformer.  相似文献   

17.
The Z and E isomers of 3‐[4‐(dimethylamino)phenyl]‐2‐(2,4,6‐tribromophenyl)acrylonitrile, C17H13Br3N2, ( 1 ), were obtained simultaneously by a Knoevenagel condensation between 4‐(dimethylamino)benzaldehyde and 2‐(2,4,6‐tribromophenyl)acetonitrile, and were investigated by X‐ray diffraction and density functional theory (DFT) quantum‐chemical calculations. The (Z)‐( 1 ) isomer is monoclinic (space group P21/n, Z′ = 1), whereas the (E)‐( 1 ) isomer is triclinic (space group P, Z′ = 2). The two crystallographically‐independent molecules of (E)‐( 1 ) adopt similar geometries. The corresponding bond lengths and angles in the two isomers of ( 1 ) are very similar. The difference in the calculated total energies of isolated molecules of (Z)‐( 1 ) and (E)‐( 1 ) with DFT‐optimized geometries is ∼4.47 kJ mol−1, with the minimum value corresponding to the Z isomer. The crystal structure of (Z)‐( 1 ) reveals strong intermolecular nonvalent Br…N [3.100 (2) and 3.216 (3) Å] interactions which link the molecules into layers parallel to (10). In contrast, molecules of (E)‐( 1 ) in the crystal are bound to each other by strong nonvalent Br…Br [3.5556 (10) Å] and weak Br…N [3.433 (4) Å] interactions, forming chains propagating along [110]. The crystal packing of (Z)‐( 1 ) is denser than that of (E)‐( 1 ), implying that the crystal structure realized for (Z)‐( 1 ) is more stable than that for (E)‐( 1 ).  相似文献   

18.
The ternary dilithium diboron carbide, Li2B2C (tetragonal, space group Pm2, tP10), crystallizes as a new structure type and consists of structural fragments which are typical for structures of elemental lithium and boron or binary borocarbide B13C2. The symmetries of the occupied sites are .m. and 2mm. for the B and C atoms, and m2 and 2mm. for the Li atoms. The coordination polyhedra around the Li atoms are cuboctahedra and 15‐vertex distorted pseudo‐Frank–Kasper polyhedra. The environment of the B atom is a ten‐vertex polyhedron. The nearest neighbours of the C atom are two B atoms, and this group is surrounded by a deformed cuboctahedron with one centred lateral facet. Electronic structure calculations using the TB–LMTO–ASA method reveal strong B...C and B...B interactions.  相似文献   

19.
The crystal structure of Ce0.8Gd0.1Ho0.1O1.9 (cerium gadolinium holmium oxide) has been determined from powder X‐ray diffraction data. This is a promising material for application as a solid electrolyte for intermediate‐temperature solid oxide fuel cells (IT‐SOFCs). Nanoparticles were prepared using a novel sodium alginate sol‐gel method, where the sodium ion was exchanged with ions of interest and, after washing, the gel was calcined at 723 K in air. The crystallographic features of Gd and Ho co‐doped cerium oxide were investigated around the desired operating temperatures of IT‐SOFCs, i.e. 573 ≤ T ≤ 1023 K. We find that the crystal structure is a stable fluorite structure with the space group Fmm in the entire temperature range. In addition, the trend in lattice parameters shows that there is a monotonic increase with increasing temperature.  相似文献   

20.
Furan‐2,5‐dicarboxylic acid (FDCA) has been ranked among the top 12 bio‐based building‐block chemicals by the Department of Energy in the US. The molecule was first synthesized in 1876, but large‐scale production has only become possible since the development of modern bio‐ and chemical catalysis techniques. The structures of two FDCA solvates, namely, FDCA dimethylformamide (DMF) disolvate, C6H4O5·2C3H7NO, (I), and FDCA dimethyl sulfoxide (DMSO) monosolvate, C6H4O5·C2H6OS, (II), are reported. Solvate (I) crystallizes in the orthorhombic Pbcn space group and solvate (II) crystallizes in the monoclinic P space group. In (I), hydrogen bonds form between the carbonyl O atom in DMF and a hydroxy H atom in FDCA. Whilst in (II), the O atom in one DMSO molecule hydrogen bonds with hydroxy H atoms in two FDCA molecules. Combined with intermolecular S…O interactions, FDCA molecules form a two‐dimensional network coordinated by DMSO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号