首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell‐free approaches to in situ tissue engineering require materials that are mechanically stable and are able to control cell‐adhesive behavior upon implantation. Here, the development of mechanically stable grafts with non‐cell adhesive properties via a mix‐and‐match approach using ureido‐pyrimidinone (UPy)‐modified supramolecular polymers is reported. Cell adhesion is prevented in vitro through mixing of end‐functionalized or chain‐extended UPy‐polycaprolactone (UPy‐PCL or CE‐UPy‐PCL, respectively) with end‐functionalized UPy‐poly(ethylene glycol) (UPy‐PEG) at a ratio of 90:10. Further characterization reveals intimate mixing behavior of UPy‐PCL with UPy‐PEG, but poor mechanical properties, whereas CE‐UPy‐PCL scaffolds are mechanically stable. As a proof‐of‐concept for the use of non‐cell adhesive supramolecular materials in vivo, electrospun vascular scaffolds are applied in an aortic interposition rat model, showing reduced cell infiltration in the presence of only 10% of UPy‐PEG. Together, these results provide the first steps toward advanced supramolecular biomaterials for in situ vascular tissue engineering with control over selective cell capturing.

  相似文献   


2.
Dual electrospinning can be used to make multifunctional scaffolds for regenerative medicine applications. Here, two supramolecular polymers with different material properties are electrospun simultaneously to create a multifibrous mesh. Bisurea (BU)‐based polycaprolactone, an elastomer providing strength to the mesh, and ureido‐pyrimidinone (UPy) modified poly(ethylene glycol) (PEG), a hydrogelator, introducing the capacity to deliver compounds upon swelling. The dual spun scaffolds are modularly tuned by mixing UPyPEG hydrogelators with different polymer lengths, to control swelling of the hydrogel fiber, while maintaining the mechanical properties of the scaffold. Stromal cell derived factor 1 alpha (SDF1α) peptides are embedded in the UPyPEG fibers. The swelling and erosion of UPyPEG increase void spaces and released the SDF1α peptide. The functionalized scaffolds demonstrate preferential lymphocyte recruitment proposed to be created by a gradient formed by the released SDF1α peptide. This delivery approach offers the potential to develop multifibrous scaffolds with various functions.  相似文献   

3.
Fibrous scaffolds, which can mimic the elastic and anisotropic mechanical properties of native tissues, hold great promise in recapitulating the native tissue microenvironment. We previously fabricated electrospun fibrous scaffolds made of hybrid synthetic elastomers (poly(1,3‐diamino‐2‐hydroxypropane‐co‐glycerol sebacate)‐co‐poly (ethylene glycol) (APS‐co‐PEG) and polycaprolactone (PCL)) to obtain uniaxial mechanical properties similar to those of human aortic valve leaflets. However, conventional electrospinning process often yields scaffolds with random alignment, which fails to recreate the anisotropic nature of most of the soft tissues such as native heart valves. Inspired by the structure of native valve leaflet, we designed a novel valve leaflet‐inspired ring‐shaped collector to modulate the electrospun fiber alignment and studied the effect of polymer formulation (PEG amount [mole %] in APS‐co‐PEG; ratio between APS‐co‐PEG and PCL; and total polymer concentration) in tuning the biaxial mechanical properties of the fibrous scaffolds. The fibrous scaffolds collected on the ring‐shaped collector displayed anisotropic biaxial mechanical properties, suggesting that their biaxial mechanical properties are closely associated with the fiber alignment in the scaffold. Additionally, the scaffold stiffness was easily tuned by changing the composition and concentration of the polymer blend. Human valvular interstitial cells (hVICs) cultured on these anisotropic scaffolds displayed aligned morphology as instructed by the fiber alignment. Overall, we generated a library of biologically relevant fibrous scaffolds with tunable mechanical properties, which will guide the cellular alignment.  相似文献   

4.
Biodegradable synthetic elastomers with tunable mechanical and physicochemical properties remain attractive materials for soft tissue engineering. We have recently synthesized novel poly(1,3‐diamino‐2‐hydroxypropane‐co‐glycerol sebacate)‐co‐poly(ethylene glycol) (APS‐co‐PEG) biodegradable elastomers. This class of PEGylated elastomers has widely tunable mechanical and degradation properties compared wtih currently available biodegradable elastomers. To further investigate the biological application of this class of elastomers, we fabricated hybrid APS‐co‐PEG/polycaprolactone (PCL) porous scaffolds by electrospinning. The fiber morphology, chemical composition, mechanical properties, degradability, and cytocompatibility of hybrid APS‐co‐PEG/PCL electrospun scaffolds were characterized. These scaffolds exhibited a wide range of mechanical properties and similar cytocompatibility to PCL scaffolds. Importantly, PEGylation inhibited platelet adhesion on all APS‐co‐PEG/PCL electrospun scaffolds when compared with PCL and APS/PCL scaffolds, suggesting a potential role in mitigating thrombogenicity in vivo. Additionally, APS‐25PEG/PCL scaffolds were found to be mechanically analogous to human heart valve leaflet and supported attachment of human aortic valve cells. These results reveal that hybrid APS‐co‐PEG/PCL scaffolds may serve as promising constructs for soft tissue engineering, especially heart valve tissue engineering. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
Electrospun biodegradable vascular grafts provide a wide range of design components from the selection of materials to the modification of fiber structure. In this study, both single layer and bilayer tubular scaffolds with inner diameter of 6 mm were electrospun from polycaprolactone with different molecular weights and poly(l ‐lactide) caprolactone polymers. Bilayer scaffolds were designed by using different combinations of the polymer types in each layer and obtaining fiber orientation in outer layers. Scaffolds were analyzed morphologically and mechanically. Obtained results of mechanical performance were discussed according to the used polymer‐type composition, fiber orientation, and composite effect of both layer in the final graft. Smooth muscle cells were seeded on the scaffolds to test biocompatibility of presented scaffolds. Results indicate that the use of different biodegradable polymers in different combinations in each layer causes notable differences in fiber morphology and mechanical performance of the scaffolds. Moreover, fiber orientation in outer layer improves tensile strength and burst pressures in radial directions while creating a suitable fibrous layer for smooth muscle cells by mimicking the extracellular matrix of tunica media in native vessels. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Functionalization of polydimethylsiloxanes (PDMS) polymers with hydrogen‐bonding ureidopyrimidinone (UPy) groups leads to supramolecular thermoplastic elastomers. In previous studies, no lateral stacking of UPy dimers was observed in UPy‐functionalized polymers, unless additional urethane or urea groups were built into the hard block. However, we have shown that when PDMS is used as the soft block, this lateral aggregation of UPy dimers does take place, since long fibers could be observed in the atomic force microscopy (AFM) phase image. Also in bulk, the presence of these interactions was proven by oscillatory shear experiments. We attribute this aggregation to the incompatibility of soft block and hard block, leading to phase separation. Moreover, we have shown that additional urethane or urea groups in the hard block do lead to materials with more fibers and higher melting points. For the UPy‐urea functionalized PDMS even single fibers are observed with AFM when dropcasted from a very diluted solution. When the length of the soft block is increased, the morphology changes from fibrous to spherical. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3877–3885, 2008  相似文献   

7.
The fabrication of three‐dimensional (3D) electrospun composite scaffolds was presented in this study. Layers of electrospun meshes made from composites of poly(lactide‐co‐glycolide acid) (PLGA) and hydroxyapatite (HA) were stacked and sintered using pressurized gas. Three HA concentrations of 5, 10, and 20 wt % were tested, and the addition of the HA nanoparticles decreased the tensile mechanical properties of the meshes with 20 wt % HA. However, after the gas absorption process, the fibers within the mesh sintered, which improved the mechanical properties more than twofold. The fabrication of 3D, porous, electrospun scaffolds was also demonstrated. The resulting 3D scaffolds had open porosity of up to 70% and modulus of ~20 MPa. This technique improves on the current electrospinning technology by overcoming the challenges of depositing a thick, 3D structure. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

8.
Supramolecular polymers based on ureido‐pyrimidinone (UPy) represent a promising class of biocompatible materials for medical applications. Here, the chemical modification effect of UV irradiation, used to sterilize these materials, is studied. Besides anticipated crosslinking effects, UV irradiation causes telechelic UPy‐polymers to become fluorescent. UPy‐model compounds confirm a relation between UV‐induced changes and the UPy‐moiety. UV‐induced fluorescence and IR‐spectral changes are (partially) reversible by heat and/or solvent treatment. The results indicate the presence of at least two distinct UV‐induced molecular species. UPy‐model compounds with specific tautomeric forms directly relate fluorescence to UPy‐enol tautomers. Photo‐enolization is hypothesized to occur via an excited‐state intermolecular double proton transfer. Changes in UPy‐tautomeric equilibrium and crosslinking are factors that influence the dynamics of UPy‐based materials. Identification and understanding of such factors will aid in the successful application of these materials, for example as biomaterial in tissue engineering applications. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 81–90  相似文献   

9.
Photodegradable physically cross‐linked polymer networks are prepared from self‐assembly of photolabile triblock copolymers. Linear triblock copolymers composed of poly (o‐nitrobenzyl methacrylate) and poly(ethylene glycol) (PEG) segments of variable molecular weights were synthesized using atom transfer radical polymerization. Triblock polymers with low‐molecular‐weight PEG segments form solid films upon hydration with robust mechanical properties including a Young's modulus of 76 ± 12 MPa and a toughness of 108 ± 31 kJ m−3. Triblock polymers with high‐molecular‐weight PEG segments form physically cross‐linked hydrogels at room temperature with a dynamic storage modulus of 13 ± 0.6 kPa and long‐term stability in hydrated environments. Both networks undergo photodegradation upon irradiation with long wave UV light.

  相似文献   


10.
Herein, we investigate the influence of spacer length on the homoassociation and heteroassociation of end‐functionalized hydrogen‐bonding polymers based on poly(n‐butyl acrylate). Two monofunctional ureido‐pyrimidinone (UPy) end‐functionalized polymers were prepared by atom transfer radical polymerization using self‐complementary UPy‐functional initiators that differ in the spacer length between the multiple‐hydrogen‐bonding group and the chain initiation site. The self‐complementary binding strength (Kdim) of these end‐functionalized polymers was shown to depend critically on the spacer length as evident from 1H NMR and diffusion‐ordered spectroscopy. In addition, the heteroassociation strength of the end‐functionalized UPy polymers with end‐functionalized polymers containing the complementary 2,7‐diamido‐1,8‐naphthyridine (NaPy) hydrogen‐bond motif is also affected when the aliphatic spacer length is too short. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

11.
Poly(ethylene glycol) (PEG) was modified with aniline groups at both the end, and then PEG‐PANI rod‐coil block polymers have been synthesized by polymerization of the aniline with the aniline‐modified PEG. FTIR, NMR, and elemental analysis provided the chemical strucutre of the as‐prepared polymers. The achiral rod‐coil copolymer could form different superstructures by means of self‐assembly when adding diethyl ether into its THF solution and the length of PANI segments is a key factor to the superstructures. AFM measurements revealed that they form spring‐like helical superstructures from the short PANI‐containing copolymers while these form fibrous helical superstructures from the longer PANI‐containing copolymer. A possible mechanism of the helical superstructures is suggested in this article and the driving force is believed the π–π stacking of the rigid segment of the copolymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 12–20, 2008  相似文献   

12.
A series of novel biodegradable hydrogels were designed and synthesized from four types of unsaturated poly(ester amide) (UPEA) and poly(ethylene glycol) diacrylate (PEG‐DA) precursors by UV photocrosslinking. These newly synthesized biodegradable UPEA/PEG‐DA hydrogels were characterized by their gel fraction (Gf), equilibrium swelling ratio (Qeq), compressive modulus, and interior morphology. The effect of the precursor feed ratio (UPEAs to PEG‐DA) on the properties of the hydrogels was also studied. The incorporation of UPEA polymers into the PEG‐DA hydrogels increased their hydrophobicity, crosslinking density (denser network), and mechanical strength (higher compressive modulus) but reduced Qeq. When different types of UPEA precursors were coupled with PEG‐DA at the same feed ratio (20 wt %), the resulting hydrogels had similar Qeq values and porous three‐dimensional interior morphologies but different Gf and compressive modulus values. These differences in the hydrogel properties were correlated to the chemical structures of the UPEA precursors; that is, the different locations of the >C?C< double bonds in individual UPEA segments resulted in their different reactivities toward PEG‐DA to form hydrogels. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3932–3944, 2005  相似文献   

13.
A series of multi-block copolymers, poly(L-lactide)-b-poly (?-caprolactone) (PLLA-b-PCL) were synthesized. The first step of the synthesis consisted of the transesterification between the PLLA and 1,4-Butanediol, followed by the copolymerization of PLLA-diols and PCL, using isophorone diisocyanate (IPDI) as a coupling agent. The synthesized polymers were characterized by Fourier transform infrared (FTIR) spectra, differential scanning calorimetry (DSC) and wide angle X-ray diffraction (WAXD). PLLA/PCL block copolymers were electrospun into ultrafine fibers. The morphology of the electrospun fibrous scaffolds were investigated by Scanning Electron Microscopy (SEM). Results showed that the morphology and diameter of the fibers were affected by the electrospinning solution concentrationan and different weight ratio of PLLA/PCL. These electrospun PLLA-b-PCL fibrous membranes exhibited good flexibility and deformability. In comparison with the electrospun PLLA membrane, the electrospun fibrous membranes of PLLA-b-PCL demonstrated an enhanced elongation with still high tensile strength and Young's modulus to be beneficial for tissue engineering scaffolds.  相似文献   

14.
Even though nanocomposites have provided a plethora of routes to increase stiffness and strength, achieving increased toughness with suppressed catastrophic crack growth has remained more challenging. Inspired by the concepts of mechanically excellent natural nanomaterials, one‐component nanocomposites were fabricated involving reinforcing colloidal nanorod cores with polymeric grafts containing supramolecular binding units. The concept is based on mechanically strong native cellulose nanocrystals (CNC) grafted with glassy polymethacrylate polymers, with side chains that contain 2‐ureido‐4[1H]‐pyrimidone (UPy) pendant groups. The interdigitation of the grafts and the ensuing UPy hydrogen bonds bind the nanocomposite network together. Under stress, UPy groups act as sacrificial bonds: simultaneously providing adhesion between the CNCs while allowing them to first orient and then gradually slide past each other, thus dissipating fracture energy. We propose that this architecture involving supramolecular binding units within side chains of polymer grafts attached to colloidal reinforcements opens generic approaches for tough nanocomposites.  相似文献   

15.
Antibacterial hydrogels containing quaternary ammonium (QA) groups were prepared via a facile thiol‐ene “click” reaction using multifunctional poly(ethylene glycol) (PEG). The multifunctional PEG polymers were prepared by an epoxy‐amine ring opening reaction. The chemical and physical properties of the hydrogels could be tuned with different crosslinking structures and crosslinking densities. The antibacterial hydrogel structures prepared from PEG Pendant QA were less well‐defined than those from PEG Chain‐End QA. Furthermore, functionalization of the PEG‐type hydrogels with QA groups produced strong antibacterial abilities against Staphylococcus aureus, and therefore has the potential to be used as an anti‐infective material for biomedical devices. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 656–667  相似文献   

16.
Three new ureidopyrimidinone(UPy)‐functionalized chain‐transfer agents (CTAs) have been synthesized for use in reversible addition‐fragmentation chain transfer (RAFT) polymerization. These UPy‐CTAs are able to polymerize a wide variety of vinyl monomers to yield UPy‐functionalized polymers, including homopolymers, block copolymers, and amphiphilic block copolymers. These polymers have been characterized via 1H and 13C NMR spectroscopy, gel permeation chromatography (GPC), UV/visible spectroscopy and differential scanning calorimetry (DSC) to demonstrate end‐group fidelity. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

17.
With the ability to form a submicron-sized fibrous structure with interconnected pores mimicking the extracellular matrix (ECM) for tissue formation, electrospinning was used to fabricate ultra-fine fiber mats of hexanoyl chitosan (H-chitosan) for potential use as skin tissue scaffolds. In the present communication, the in vitro biocompatibility of the electrospun fiber mats was evaluated. Indirect cytotoxicity evaluation of the fiber mats with mouse fibroblasts (L929) revealed that the materials were non-toxic and did not release substances harmful to living cells. The potential for use of the fiber mats as skin tissue scaffolds was further assessed in terms of the attachment and the proliferation of human keratinocytes (HaCaT) and human foreskin fibroblasts (HFF) that were seeded or cultured on the scaffolds at different times. The results showed that the electrospun fibrous scaffolds could support the attachment and the proliferation of both types of cells, especially for HaCaT. In addition, the cells cultured on the fibrous scaffolds exhibited normal cell shapes and integrated well with surrounding fibers. The obtained results confirmed the potential for use of the electrospun H-chitosan fiber mats as scaffolds for skin tissue engineering.  相似文献   

18.
聚乙二醇对PAMPS/PAM双网络水凝胶性能的影响   总被引:2,自引:0,他引:2  
采用紫外光引发聚合制备了聚乙二醇(PEG)改性的聚(2-丙烯酰胺-2-甲基丙磺酸)/聚丙烯酰胺(PAMPS/PAM)双网络水凝胶.测定并比较了PEG改性前后双网络水凝胶的溶胀动力学以及单网络水凝胶中丙烯酰胺(AM)的吸收量;用扫描电子显微镜(SEM)观察了单网络水凝胶的结构;测定PEG改性前后双网络水凝胶的压缩及拉伸性能.结果表明,经PEG改性后的双网络水凝胶有较高的溶胀比;改性后单网络水凝胶更易吸收AM;改性后双网络水凝胶压缩形变率达到90%以上、拉伸形变率是未改性双网络水凝胶的2倍.  相似文献   

19.
We report the synthesis of poly N‐(2‐hydroxypropyl)methacrylamide ordered arrays of fluid filled channels. The polymerization and crosslinking reactions are carried out under the influence of a constant electric field (60 V/cm). A charged comonomer, immobiline (pK 3.6), and porogen, polyethylene glycol (PEG) are added to the pregel solutions. Scanning electron microscopy reveals that the channels have a typical diameter of 2–25 μm and are oriented parallel to the electric field employed during synthesis. The self‐organization of channels occurs around an optimal PEG concentration of 8.6 wt/vol %, whereas significantly higher or lower concentrations yield random, isotropic pore structures. Moreover, tensile strength measurements show that the mechanical stability increases with decreasing concentration of PEG. Rheology experiments reveal that the swelling degree of these superabsorbant hydrogels increases with increasing PEG. Possible applications of these microstructured hydrogels as bidirectional scaffolds for regenerating neurons in the injured spinal cord are discussed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2593–2600, 2007  相似文献   

20.
Lee HJ  Kim HS  Kim HO  Koh WG 《Lab on a chip》2011,11(17):2849-2857
This paper describes the development of multi-functional nanofiber scaffolds consisting of multiple layers of nanofiber scaffolds and nanofiber-incorporated poly(ethylene glycol) (PEG) hydrogels. As a proof-of-concept demonstration, we fabricated micropatterned polymeric nanofiber scaffolds that were capable of simultaneously generating cellular micropatterns within a biomimetic environment and detecting cellular metabolic products within well-defined microdomains. To achieve this goal, we designed nanofiber scaffolds with both vertical and lateral microdomains. Vertically heterogeneous structures that were responsible for multi-functionality were realized by preparing double-layered nanofiber scaffolds consisting of an antibody-immobilized bottom layer of nanofibers and an upper layer of bare polystyrene (PS) nanofibers by a two-step sequential electrospinning process. Photopatterning of poly(ethylene glycol) (PEG) hydrogel on the electrospun nanofibers produced laterally heterogeneous micropatterned nanofiber scaffolds made of hydrogel microwells filled with a nanofibrous region, which is capable of generating cell and protein micropatterns due to the different interactions that cells and proteins have with PEG hydrogels and nanofibers. When HepG2 cells were seeded into resultant nanofiber scaffolds, cells selectively adhered within the 200 μm × 200 μm PS fiber microdomain and formed 180.2 ± 6.7 μm spheroids after 5 days of culture in the upper layer. Furthermore, immobilized anti-albumin in the bottom layer detected albumin secreted by micropatterned HepG2 cells with higher sensitivity than flat PS substrates, demonstrating successful accomplishment of dual functions using micropatterned double-layered nanofiber scaffolds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号