首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oxidation of l-phenylalanine by hexacyanoferrate(III) (abbreviated as HCF) catalyzed by Ir(III) has been studied spectrophotometrically at 35 °C and at a constant ionic strength of 0.50 mol dm−3. The main oxidation product was identified as phenylpyruvic acid by physico-chemical and spectroscopic methods. The stoichiometry was found to be 2:1, i.e. 2 mol of hexacyanoferrate(III) reacted with 1 mol of phenylalanine. The reaction was first order with respect to both HCF and alkali concentration. The order with respect to [Phe] changed from first to zero as the concentration was increased. The effect of ionic strength was also investigated. Thermodynamic parameters were evaluated by studying the reaction at four different temperatures between 35 and 50 °C. Based on the experimental results, a suitable mechanism involving complex formation has been proposed.  相似文献   

2.
The kinetics of ruthenium(III) catalyzed oxidation of sulfanilic acid by diperiodatocuprate(III) (DPC) in alkaline medium at a constant ionic strength of (0.50 mol dm−3) has been studied spectrophoto-metrically. The reaction between sulfanilic acid and DPC in alkaline medium exhibits 1: 4 stoichiometry (sulfanilic acid: DPC). The reaction is first order with respect to [DPC] and [RuIII] and has less than unit order both in [sulfanilic acid] and [alkali]. The active species of catalyst and oxidant have been identified. Intervention of free radicals was observed in the reaction. The main products were identified by spot test and IR. Probable mechanism is proposed and discussed. The reaction constants involved in the different steps of the mechanism are calculated. The activation parameters with respect to the slow step of the mechanism are computed and discussed. Thermodynamic quantities are also determined.  相似文献   

3.
The kinetics and oxidation of diclofenac sodium (DFS) by diperiodatoargentate(III) (DPA) in alkaline medium at 298 K and at a constant ionic strength of 0.60 mol dm?3 were studied spectrophotometrically. The oxidation products were [2‐(2,6‐dicloro‐phynylamino)‐phenyl]‐methenol and Ag(I), identified by LC‐ESI‐MS and IR spectral studies. The reaction between DFS and DPA in alkaline medium exhibits 1:1 stoichiometry. The reaction is first order in [DPA] and has a less than unit order dependence each in [DFS] and [alkali]. Increasing concentrations of IO?4 retard the reaction. The active species of DPA proposed to be monoperiodatoargentate(III), and a mechanism is suggested. The rate constants involved in the different steps of the mechanism were determined and are discussed. The activation parameters with respect to a rate‐limiting step of the mechanism were determined. The thermodynamic quantities were also determined. Using the oxidation of DFS by DPA, DFS was analyzed by kinetic methods in urine and blood sample. The proposed method enables DFS analysis in the range from 5.0 × 10?5 to 5.0 × 10?3 mol dm?3. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 42: 336–346, 2010  相似文献   

4.
The kinetics of oxidation of vanillin (VAN) by diperiodatocuprate(III) (DPC) in alkaline medium at a constant ionic strength of 0.50 mol dm?3 was studied spectrophotometrically. The reaction between DPC and vanillin in alkaline medium exhibits 1:2 stoichiometry (vanillin: DPC). The reaction is of first order in [DPC] and has less than unit order in both [VAN] and [alkali]. Intervention of free radicals was observed in the reaction. Increase in periodate concentration decreases the rate. The oxidation reaction in alkaline medium has been shown to proceed via a monoperiodatocuprate(III)–vanillin complex, which decomposes slowly in a rate‐determining step followed by other fast steps to give the products. The main products were identified by spot test, IR, and MS studies. The reaction constants involved in the different steps of the mechanism are calculated. The activation parameters with respect to slow step of the mechanism are computed and discussed, and thermodynamic quantities are also determined. © 2007 Wiley Periodicals, Inc. 39: 236–244, 2007  相似文献   

5.
The oxidation of D ‐mannitol by cerium(IV) has been studied spectrophotometrically in aqueous sulfuric acid medium at 25°C at constant ionic strength of 1.60 mol dm?3. A microamount of ruthenium(III) (10?6 mol dm?3) is sufficient to enhance the slow reaction between D ‐mannitol and cerium(IV). The oxidation products were identified by spot test, IR and GC‐MS spectra. The stoichiometry is 1:4, i.e., [D ‐mannitol]: [Ce(IV)] = 1:4. The reaction is first order in both cerium(IV) and ruthenium(III) concentrations. The order with respect to D ‐mannitol concentration varies from first order to zero order as the D ‐mannitol concentration increases. Increase in the sulfuric acid concentration decreases the reaction rate. The added sulfate and bisulfate decreases the rate of reaction. The active species of oxidant and catalyst are Ce(SO4)2 and [Ru(H2O)6]3+, respectively. A possible mechanism is proposed. The activation parameters are determined with respect to a slow step and reaction constants involved have been determined. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 42: 440–452, 2010  相似文献   

6.
The kinetics and mechanism of oxidation of poly(ethylene glycol) (PEG) by the permanganate ion as a multiequivalent oxidant in aqueous perchlorate solutions at an ionic strength of 2.0 mol dm−3 has been investigated spectrophotometrically. The reaction kinetics was found to be of complex in nature. The pseudo–first‐order plots showed curves of inverted S‐shape, consisting of two distinct stages throughout the entire course of reaction. The first stage was relatively slow, followed by a fast reaction rate at longer time periods. The first‐order dependence in [MnO4], fractional first‐order dependence in [H+], and fractional first‐order kinetics in the PEG concentration for the first stage have been revealed in the absence of the Ru(III) catalyst. The influence of the Ru(III) catalyst on the oxidation kinetics has been examined. The oxidation was found to be catalyzed by the added Ru(III) catalyst. The First‐order dependence on the catalyst and zero order with respect to the oxidant concentrations have been observed. The kinetic parameters have been evaluated, and a tentative reaction mechanism consistent with the kinetic results is suggested and discussed.  相似文献   

7.
The kinetics of RuIII-catalysed oxidation of tellurium(IV) by alkaline diperiodatonickelate(IV) were studied spectrophotometrically using a rapid kinetic accessory. The reaction is a two stage process. In both the stages, the reaction is first-order with respect to [oxidant] and to [catalyst] with an apparent less than unit order, each in [substrate] and [alkali]. Periodate has a retarding effect on the reaction rate. A mechanism involving monoperiodatonickelate(IV) (MPN) as the reactive oxidant species is proposed. The data suggest that oxidation proceeds via formation of a complex between the active species of RuIII and TeIV, which then reacts with 1 mol of MPN in a slow step to yield the products. The reaction constants involved in the mechanism were evaluated. There is good agreement between the observed and calculated rate constants under varying experimental conditions for both the stages of reaction. The activation parameters for the slow step were calculated and discussed.  相似文献   

8.
The kinetics of CrIII-catalysed oxidation of L-valine by permanganate in alkaline medium at a constant ionic strength has been studied spectrophotometrically. The reaction between permanganate and L-valine in alkaline medium exhibits 2:1 stoichiometry (KMnO4:l-valine). The reaction shows first order dependence on [permanganate] and [chromium(III)], and less than unit order dependence each in [L-valine] and alkali concentrations under the experimental conditions. However the order in [L-valine] and [alkali] changes from first order to zero order as the concentrations change from lower to higher respectively. The results suggest the formation of a complex between L-valine and the hydroxylated species of CrIII. The complex reacts further with 1 mol of alkaline permanganate species in a rate-determining step, resulting in the formation of a free radical, which again reacts with 1 mol of alkaline permanganate species in a subsequent fast step to yield the products. The reaction constants involved in the mechanism were evaluated. The activation parameters with respect to the slow step of the mechanism were obtained and discussed. The title reaction has been utilised to analyse chromium(III) in the 26.0 ng cm–3–1.0 g cm–3 range.  相似文献   

9.
The catalytic effect of silver(I) and copper(II) ions on the oxidation of histidine by cerium(IV) in aqueous sulfuric acid solutions was studied spectrophotometrically at a constant ionic strength of 3.0 mol dm−3 and at 25°C. In both uncatalyzed and metal ions‐catalyzed paths, the reactions exhibited first‐order kinetics with respect to [Ce(IV)] and [catalyst], and fractional first‐order dependences with respect to [His] and [H+]. The oxidation rates increased as the ionic strength and dielectric constant of the reactions media increased. The catalytic efficiency of Ag(I) was higher than that of Cu(II). Plausible mechanistic schemes for both uncatalyzed and catalyzed reactions were proposed, and the rate laws associated with the suggested mechanisms were derived. In both cases, the final oxidation products of histidine were identified as 2‐imidazole acetaldehyde, ammonium ion, and carbon dioxide. The activation parameters associated with the second‐order rate constants were evaluated.  相似文献   

10.
The kinetics of oxidation of L-phenylalanine (L-Phe) by diperiodatoargentate(III) (DPA) in alkaline medium at a constant ionic strength of 0.25 mol/dm−3 has been studied spectrophotometrically. The reaction between DPA and L-phenylalanine in alkaline medium exhibits 1: 1 stoichiometry (L-phenylalanine: DPA). The reaction shows first order in [DPA] and has less than unit order dependence each in both [L-Phe] and [Alkali] and retarding effect of [IO4] under the reaction conditions. The active species of DPA is understood to be as monoperiodatoargentate(III) (MPA). The reaction is shown to proceed via a MPA-L-Phe complex, which decomposes in a rate-determining step to give intermediates followed by a fast step to give the products. The products were identified by spot and spectroscopic studies. The reaction constants involved in the different steps of the mechanisms were calculated. The activation parameters with respect to slow step of the mechanism were computed and discussed. The thermodynamic quantities were also determined for the reaction.  相似文献   

11.
Captopril (Capt, 1-[2(s)-3-mercapto-2-methyl-1-oxopropyl]-l-proline) was oxidized by hexacyanoferrate(III) (HCF). The kinetics of the oxidation was studied spectrophotometrically at 420 nm. The reaction was found to be first order in [HCF] and [Capt] and to have a negative fractional order in [H+]. Oxidation was followed by generation of a free radical from captopril, and the oxidative product of catpotpril was identified as captopril disulfide. It was characterized by IR, GCMS and ESI–MS spectra. Initially added product, hexacyanoferrate(II), retarded the rate of reaction with an order of ?0.5. The retarding effect of added [H+] indicated that unprotonated hexacyanoferrate(III) is the active species. A suitable free radical mechanism was proposed. The rate law was derived and verified.  相似文献   

12.
The formation of palladium(II) complexes with aliphatic amines and their oxidation by chloramine‐T in perchloric acid medium has been studied. The spectrophotometric studies showed the formation of 1:1 and 1:2 complexes between palladium(II) and amine in absence of HClO4. An increase in [HClO4] in reaction mixture suppresses the complex formation and in presence of [HClO4] ~10?3 mol dm?3 only a 1:1 complex between palladium(II) and amine has been observed. The effect of Cl? on the complex formation has also been studied. Palladium(II)‐catalyzed oxidation of these amines by chloramine‐T showed a first‐order dependence of rate with respect to each—oxidant, substrate, catalyst, and H+. The mechanism consistent with kinetic data for the oxidation process has been proposed in absence as well as in presence of initial [Cl?]. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 603–612, 2002  相似文献   

13.
The catalytic effect of copper(II) ions toward the oxidation of ‐asparagine (Asn) by an anticancer platinum(IV) complex in the form of hexachloroplatinate(IV) (HCP) has been investigated in aqueous acid medium at the constant ionic strength and temperature. The progress of both uncatalyzed and copper(II)‐catalyzed oxidation reactions has been monitored spectrophotometrically. The stoichiometry in both cases is [Asn]/[HCP] = 1:1. The kinetics of both redox reactions is first order with respect to [oxidant] and less than the unit order in [acid]. The order with respect to [Asn]T decreases from unity in the uncatalyzed path to less than unity in the catalyzed one. The catalyzed path is first order in [CuII]T. Increasing ionic strength and dielectric constant decreases the oxidation rates. The final oxidation products of ‐asparagine are identified as the corresponding aldehyde (α‐formyl acetamide), ammonium ion, and carbon dioxide. Tentative mechanisms of both reactions have been suggested. The appropriate rate laws are deduced. The activation parameters of the uncatalyzed reaction have been evaluated and discussed.  相似文献   

14.
The kinetics of oxidation of L-lysine by diperiodatocuprate (III) (DPC) in alkaline medium at a constant ionic strength of 0.15 mol/dm3 was studied spectrophotometrically. The reaction between DPC and L-lysine in an alkaline medium had a 1: 2 stoichiometry (L-lysine: DPC). The reaction was first order in [DPC] and less than first order in [L-lysine] and [alkali]. The addition of periodate had no effect on the rate of the reaction. The intervention of free radicals was observed in the reaction. The oxidation reaction in alkaline medium was shown to proceed via a DPC-L-lysine complex. The main products were identified by spot test and spectral studies. The reaction constants involved in different steps of the mechanism were calculated. The activation parameters with respect to the slow step of the mechanism were computed and discussed, and thermodynamic values were also determined. The article is published in the original.  相似文献   

15.
The kinetics of Ir (III) chloride-catalyzed oxidation of D-glucose by iodate in aqueous alkaline medium was investigated at 45°C. The reaction follows first-order kinetics with respect to potassium iodate in its low concentration range but tends to zero order at its higher concentration. Zero-order kinetics with respect to [D-glucose] was observed. In the lower concentration range of Ir (III) chloride, the reaction follows first kinetics, while the order shifts from first to zero at its higher concentration range. The reaction follows first-order kinetics with respect to [OH?] at its low concentration but tends towards zero order at higher concentration. Variation in [Cl?] and ionic strength of the medium did not bring about any significant change in the rate of reaction. The first-order rate constant increased with a decrease in the dielectric constant of the medium. The values of rate constants observed at four different temperatures were utilized to calculate the activation parameters. Sodium salt of formic acid and arabinonic acid have been identified as the main oxidation products of the reaction. A plausible mechanism from the results of kinetic studies, reaction stoichiometry, and product analysis has been proposed.  相似文献   

16.
Summary The kinetics of the OsVIII-catalyzed oxidation of phosphite by diperiodatoargentate(III) (DPA) have been investigated in aqueous base. The reaction rate is independent of [DPA], but first order with respect to [phosphite] and to [OsVIII]. The rate of reaction increases with increase in [KOH] and tends to a limiting value. Activation parameters have been calculated and suitable mechanism is proposed to explain the observed results.  相似文献   

17.
《印度化学会志》2021,98(8):100104
The kinetics approach of oxidation of torsemide (TOR) by hexacyanoferrate (III) [HCF (III)] has been identified spectrophotometrically at 420 ​nm in the alkaline medium in the presence and absence of catalyst ruthenium (III) at 25 ​°C, by keeping ionic strength (1 ​× ​10−2 ​mol ​dm−3) constant. The reaction exhibits at the stoichiometry ratio 1:2 of TOR and HCF (III), for uncatalysed and catalysed reactions. In the absence and presence of the catalyst, the order of the reactions obtained for TOR and HCF (III) was unity. However, the rate of the reactions enhanced by the increase in the concentration of catalyst, as well as the rate increases with an increase in alkaline concentration. The activation parameters for the reaction at the slow step were identified, and the effect of temperature on the rate of the reaction was analysed. A suitable mechanism has been demonstrated by considering the obtained results. The derived rate laws are reliable with analysed experimental kinetics.  相似文献   

18.
The kinetics of oxidation of some aldoses, amino sugars and methylated sugars by osmium (VIII) have been studied spectrophotometrically in alkaline medium. The reactions are first‐order with respect to both [sugar]≤9.0×10−3 mol dm−3 and [OH]≤10.0×10−2 mol dm−3 but tends toward zero order with respect to each at higher concentration. Activation parameters of the reactions have been calculated and plausible reaction mechanisms have been suggested. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 477–483, 1999  相似文献   

19.
Kinetics of ruthenium (III) catalyzed oxidation of atenolol by permanganate in alkaline medium at constant ionic strength of 0.30 mol dm3 has been studied spectrophotometrically using a rapid kinetic accessory. Reaction between permanganate and atenolol in alkaline medium exhibits 1 : 8 stoichiometry (atenolol : KMnO4). The reaction shows first-order dependence on [permanganate] and [ruthenium (III)] and apparently less than unit order on both atenolol and alkali concentrations. Reaction rate decreases with increase in ionic strength and increases with decreasing dielectric constant of the medium. Initial addition of reaction products does not affect the rate significantly. A mechanism involving the formation of a complex between catalyst and substrate has been proposed. The active species of ruthenium (III) is understood as [Ru(H2O)5OH]2+. The reaction constants involved in the different steps of mechanism are calculated. Activation parameters with respect to the slow step of the mechanism are computed and discussed and thermodynamic quantities are also calculated.  相似文献   

20.
The kinetic study of ligand substitution reaction of 2‐hydroxy 1,3‐diamino propane N,N′N′‐tetraacetatoiron(III) ([FeHPDTA(OH)]2?) complex with 4‐(2‐pyridylazo)resorcinol (Par) has been followed spectrophotometrically at pH = 9.00 ± 0.02, I = 0.1 M (NaClO4), and temperature = 25.0 ± 0.1°C. The forward and reverse reactions have been studied at 496 nm, the λmax of [Fe(Par)2]? which is identified as the final product of above reaction. The second‐order rate constants for the reaction of [FeHPDTA(OH)]2? with Par were determined in a wide pH range viz. 8.0–11.5. It is observed from pH dependence of reaction that rate of reaction increases initially with pH and then levels off. In the case of reverse reaction between [Fe(Par)2]? and HPDTA4?, the pseudo‐first‐order rate constant does not change with concentration at extremely low concentration of [HPDTA]4? and shows zero‐order dependence in [HPDTA]4?. At relatively higher concentration of [HPDTA]4?, the order of reaction with respect to [HPDTA]4? is found to be 1. An inverse first‐order dependence is also observed with respect to added [Par]2?. The activation parameters were evaluated for forward and reverse reactions, which further supported the proposed mechanistic scheme. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 37: 333–340, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号