首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Weak interactions between organic molecules are important in solid‐state structures where the sum of the weaker interactions support the overall three‐dimensional crystal structure. The sp‐C—H…N hydrogen‐bonding interaction is strong enough to promote the deliberate cocrystallization of a series of diynes with a series of dipyridines. It is also possible that a similar series of cocrystals could be formed between molecules containing a terminal alkyne and molecules which contain carbonyl O atoms as the potential hydrogen‐bond acceptor. I now report the crystal structure of two cocrystals that support this hypothesis. The 1:1 cocrystal of 1,4‐diethynylbenzene with 1,3‐diacetylbenzene, C10H6·C10H10O2, (1), and the 1:1 cocrystal of 1,4‐diethynylbenzene with benzene‐1,4‐dicarbaldehyde, C10H6·C8H6O2, (2), are presented. In both cocrystals, a strong nonconventional ethynyl–carbonyl sp‐C—H…O hydrogen bond is observed between the components. In cocrystal (1), the C—H…O hydrogen‐bond angle is 171.8 (16)° and the H…O and C…O hydrogen‐bond distances are 2.200 (19) and 3.139 (2) Å, respectively. In cocrystal (2), the C—H…O hydrogen‐bond angle is 172.5 (16)° and the H…O and C…O hydrogen‐bond distances are 2.25 (2) and 3.203 (2) Å, respectively.  相似文献   

2.
1‐Benzoylthioureas contain both carbonyl and thiocarbonyl functional groups and are of interest for their biological activity, metal coordination ability and involvement in hydrogen‐bond formation. Two novel 1‐benzoylthiourea derivatives, namely 1‐benzoyl‐3‐(3,4‐dimethoxyphenyl)thiourea, C16H16N2O3S, (I), and 1‐benzoyl‐3‐(2‐hydroxypropyl)thiourea, C11H14N2O2S, (II), have been synthesized and characterized. Compound (I) crystallizes in the space group P , while (II) crystallizes in the space group P 21/c . In both structures, intramolecular N—H…O hydrogen bonding is present. The resulting six‐membered pseudo‐rings are quasi‐aromatic and, in each case, interact with phenyl rings via stacking‐type interactions. C—H…O, C—H…S and C—H…π interactions are also present. In (I), there is one molecule in the asymmetric unit. Pairs of molecules are connected via two intermolecular N—H…S hydrogen bonds, forming centrosymmetric dimers. In (II), there are two symmetry‐independent molecules that differ mainly in the relative orientations of the phenyl rings with respect to the thiourea cores. Additional strong hydrogen‐bond donor and acceptor –OH groups participate in the formation of intermolecular N—H…O and O—H…S hydrogen bonds that join molecules into chains extending in the [001] direction.  相似文献   

3.
A novel two‐dimensional (2D) ZnII coordination framework, poly[[μ‐1,3‐bis(2‐methyl‐1H‐imidazol‐1‐yl)benzene](μ‐5‐nitrobenzene‐1,3‐dicarboxylato)zinc(II)], [Zn(C8H3NO6)(C14H14N4)]n or [Zn(NO2‐BDC)(1,3‐BMIB)]n [1,3‐BMIB is 1,3‐bis(2‐methyl‐1H‐imidazol‐1‐yl)benzene and NO2‐H2BDC is 5‐nitrobenzene‐1,3‐dicarboxylic acid], has been prepared and characterized by IR, elemental analysis, thermal analysis and single‐crystal X‐ray diffraction. Single‐crystal X‐ray diffraction analysis revealed that the compound is a new 2D polymer with a 63 topology parallel to the (10) crystal planes based on left‐handed helices, right‐handed helical NO2‐BDC–Zn chains and [Zn2(1,3‐BMIB)2]n clusters. In the crystal, adjacent layers are further connected by C—H…O hydrogen bonds, C—H…π interactions, C—O…π interactions and N—O…π interactions to form a three‐dimensional structure in the solid state. In addition, the compound exhibits strong fluorescence emissions in the solid state at room temperature.  相似文献   

4.
The carboxylic acid group is an example of a functional group which possess a good hydrogen‐bond donor (–OH) and acceptor (C=O). For this reason, carboxylic acids have a tendency to self‐assembly by the formation of hydrogen bonds between the donor and acceptor sites. We present here the crystal structure of N‐tosyl‐l ‐proline (TPOH) benzene hemisolvate {systematic name: (2S)‐1‐[(4‐methylbenzene)sulfonyl]pyrrolidine‐2‐carboxylic acid benzene hemisolvate}, C12H15NO4S·0.5C6H6, (I), in which a cyclic R22(8) hydrogen‐bonded carboxylic acid dimer with a strong O—(H)…(H)—O hydrogen bond is observed. The compound was characterized by single‐crystal X‐ray diffraction and NMR spectroscopy, and crystallizes in the space group I2 with half a benzene molecule and one TPOH molecule in the asymmetric unit. The H atom of the carboxyl OH group is disordered over a twofold axis. An analysis of the intermolecular interactions using the noncovalent interaction (NCI) index showed that the TPOH molecules form dimers due to the strong O—(H)…(H)—O hydrogen bond, while the packing of the benzene solvent molecules is governed by weak dispersive interactions. A search of the Cambridge Structural Database revealed that the disordered dimeric motif observed in (I) was found previously only in six crystal structures.  相似文献   

5.
A microcrystalline carboxyl‐functionalized imidazolium chloride, namely 1‐carboxymethyl‐3‐ethylimidazolium chloride, C7H11N2O2+·Cl, has been synthesized and characterized by elemental analysis, attenuated total reflectance Fourier transform IR spectroscopy (ATR‐FT‐IR), single‐crystal X‐ray diffraction, thermal analysis (TGA/DSC), and photoluminescence spectroscopy. In the crystal structure, cations and anions are linked by C—H…Cl and C—H…O hydrogen bonds to create a helix along the [010] direction. Adjacent helical chains are further interconnected through O—H…Cl and C—H…O hydrogen bonds to form a (10) layer. Finally, neighboring layers are joined together via C—H…Cl contacts to generate a three‐dimensional supramolecular architecture. Thermal analyses reveal that the compound melts at 449.7 K and is stable up to 560.0 K under a dynamic air atmosphere. Photoluminescence measurements show that the compound exhibits a blue fluorescence and a green phosphorescence associated with spin‐allowed (1π←1π*) and spin‐forbidden (1π←3π*) transitions, respectively. The average luminescence lifetime was determined to be 1.40 ns for the short‐lived (1π←1π*) transition and 105 ms for the long‐lived (1π←3π*) transition.  相似文献   

6.
Neutralization of 4‐[(2,2,3,3‐tetrafluoropropoxy)methyl]pyridine with hydrohalo acids HX (X = Cl and Br) yielded the pyridinium salts 4‐[(2,2,3,3‐tetrafluoropropoxy)methyl]pyridinium chloride, C9H10F4NO+·Cl, (1), and 4‐[(2,2,3,3‐tetrafluoropropoxy)methyl]pyridinium bromide, C9H10F4NO+·Br, (2), both carrying a fluorous side chain at the para position of the pyridinium ring. Single‐crystal X‐ray diffraction techniques revealed that (1) and (2) are isomorphous. The halide anions accept four hydrogen bonds from N—H, ortho‐C—H and CF2—H groups. Two cations and two anions form a centrosymmetric dimeric building block, utilizing complimentary N—H…X …H—Csp 3 connections. These dimers are further crosslinked, utilizing another complimentary Csp 2—H…X …H—Csp 2 connection. The pyridinium rings are π‐stacked, forming columns running parallel to the a axis that make angles of ca 44–45° with the normal to the pyridinium plane. There are also supramolecular C—H…F—C interactions, namely bifurcated C—H…F and bifurcated C—F…H interactions; additionally, one type II C—F…F—C halogen bond has been observed.  相似文献   

7.
The energetic ionic salt bis(1‐aminoguanidin‐2‐ium) 5,5′‐[1,2,4,5‐tetrazine‐3,6‐diylbis(azanediyl)]bis(1H‐1,2,3,4‐tetrazol‐1‐ide) dihydrate, 2CH7N4+·C4H2N142−·2H2O, (I), with a high nitrogen content, has been synthesized and examined by elemental analysis, Fourier transform IR spectrometry, 1H NMR spectroscopy and single‐crystal X‐ray crystallography. Compound (I) crystallizes in the monoclinic space group P 21/c with two water molecules. However, the water molecules are disordered about an inversion centre and were modelled as half‐occupancy molecules in the structure. The crystal structure reveals a three‐dimensional network of molecules linked through N—H…N, N—H…O, O—H…N and O—H…O hydrogen bonds. Thermal decomposition was investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The exothermic peak temperature is 509.72 K, which indicates that hydrated salt (I) exhibits good thermal stability. Non‐isothermal reaction kinetic parameters were calculated via both the Kissinger and the Ozawa methods to yield activation energies of E k = 239.07 kJ mol−1, lgA k = 22.79 s−1 and E O = 235.38 kJ mol−1 for (I). Additionally, the thermal safety was evaluated by calculating critical temperatures and thermodynamic values, viz. T SADT, T TIT, T b, ΔS , ΔH and ΔG . The results reveal that (I) exhibits good thermal safety compared to other ion salts of 3,6‐bis[(1H‐1,2,3,4‐tetrazol‐5‐yl)amino]‐1,2,4,5‐tetrazine (BTATz).  相似文献   

8.
The polymorphic study of 3‐(3‐phenyl‐1H‐1,2,4‐triazol‐5‐yl)‐2H‐1‐benzopyran‐2‐one, C17H11N3O2, was performed due to its potential biological activity and revealed three polymorphic modifications in the triclinic space group P, the monoclinic space group P21 and the orthorhombic space group Pbca. These polymorphs have a one‐column layered type of crystal organization. The strongest interactions between the molecules of the studied structures is stacking between π‐systems, while N—H…N and C—H…O hydrogen bonds link stacked columns forming layers as a secondary basic structural motif. C—H…π hydrogen bonds were observed between neighbouring layers and their role is the least significant in the formation of the crystal structure. Packing differences between the polymorphic modifications are minor and can be identified only using an analysis based on a comparison of the pairwise interaction energies.  相似文献   

9.
The structure of the new salt 1‐(o‐tolyl)biguanidium chloride, C9H14N5+·Cl?, has been determined by single‐crystal X‐ray diffraction. The salt crystallizes in the monoclinic space group C2/c. In this structure, the chloride and biguanidium hydrophilic ions are mostly connected to each other via N—H…N and N—H…Cl hydrogen bonds to form layers parallel to the ab plane around y = and y = . The 2‐methylbenzyl groups form layers between these layers around y = 0 and y = , with the methyl group forming C—H…π interactions with the aromatic ring. Intermolecular interactions on the Hirshfeld surface were investigated in terms of contact enrichment and electrostatic energy, and confirm the role of strong hydrogen bonds along with hydrophobic interactions. A correlation between electrostatic energy and contact enrichment is found only for the strongly attractive (N—H…Cl?) and repulsive contacts. Electrostatic energies between ions reveal that the interacting biguanidium cation pairs are repulsive and that the crystal is maintained by attractive cation…Cl? dimers. The vibrational absorption bands were identified by IR spectroscopy.  相似文献   

10.
Alkanolamines have been known for their high CO2 absorption for over 60 years and are used widely in the natural gas industry for reversible CO2 capture. In an attempt to crystallize a salt of (RS)‐2‐(3‐benzoylphenyl)propionic acid with 2‐amino‐2‐methylpropan‐1‐ol, we obtained instead a polymorph (denoted polymorph II) of bis(1‐hydroxy‐2‐methylpropan‐2‐aminium) carbonate, 2C4H12NO+·CO32−, (I), suggesting that the amine group of the former compound captured CO2 from the atmosphere forming the aminium carbonate salt. This new polymorph was characterized by single‐crystal X‐ray diffraction analysis at low temperature (100 K). The salt crystallizes in the monoclinic system (space group C2/c, Z = 4), while a previously reported form of the same salt (denoted polymorph I) crystallizes in the triclinic system (space group P, Z = 2) [Barzagli et al. (2012). ChemSusChem, 5 , 1724–1731]. The asymmetric unit of polymorph II contains one 1‐hydroxy‐2‐methylpropan‐2‐aminium cation and half a carbonate anion, located on a twofold axis, while the asymmetric unit of polymorph I contains two cations and one anion. These polymorphs exhibit similar structural features in their three‐dimensional packing. Indeed, similar layers of an alternating cation–anion–cation neutral structure are observed in their molecular arrangements. Within each layer, carbonate anions and 1‐hydroxy‐2‐methylpropan‐2‐aminium cations form planes bound to each other through N—H…O and O—H…O hydrogen bonds. In both polymorphs, the layers are linked to each other via van der Waals interactions and C—H…O contacts. In polymorph II, a highly directional C—H…O contact (C—H…O = 156°) shows as a hydrogen‐bonding interaction. Periodic theoretical density functional theory (DFT) calculations indicate that both polymorphs present very similar stabilities.  相似文献   

11.
Aminoalkanol derivatives have attracted much interest in the field of medicinal chemistry as part of the search for new anticonvulsant drugs. In order to study the influence of the methyl substituent and N‐oxide formation on the geometry of molecules and intermolecular interactions in their crystals, three new examples have been prepared and their crystal structures determined by X‐ray diffraction. 1‐[(2,6‐Dimethylphenoxy)ethyl]piperidin‐4‐ol, C15H23NO2, 1 , and 1‐[(2,3‐dimethylphenoxy)ethyl]piperidin‐4‐ol, C15H23NO2, 2 , crystallize in the orthorhombic system (space groups P212121 and Pbca, respectively), with one molecule in the asymmetric unit, whereas the N‐oxide 1‐[(2,3‐dimethylphenoxy)ethyl]piperidin‐4‐ol N‐oxide monohydrate, C15H23NO3·H2O, 3 , crystallizes in the monoclinic space group P21/c, with one N‐oxide molecule and one water molecule in the asymmetric unit. The geometries of the investigated compounds differ significantly with respect to the conformation of the O—C—C linker, the location of the hydroxy group in the piperidine ring and the nature of the intermolecular interactions, which were investigated by Hirshfeld surface and corresponding fingerprint analyses. The crystal packing of 1 and 2 is dominated by a network of O—H…N hydrogen bonds, while in 3 , it is dominated by O—H…O hydrogen bonds and results in the formation of chains.  相似文献   

12.
To enable a comparison between a C—H…X hydrogen bond and a halogen bond, the structures of two fluorous‐substituted pyridinium iodide salts have been determined. 4‐[(2,2‐Difluoroethoxy)methyl]pyridinium iodide, C8H10F2NO+·I, (1), has a –CH2OCH2CF2H substituent at the para position of the pyridinium ring and 4‐[(3‐chloro‐2,2,3,3‐tetrafluoropropoxy)methyl]pyridinium iodide, C9H9ClF4NO+·I, (2), has a –CH2OCH2CF2CF2Cl substituent at the para position of the pyridinium ring. In salt (1), the iodide anion is involved in one N—H…I and three C—H…I hydrogen bonds, which, together with C—H…F hydrogen bonds, link the cations and anions into a three‐dimensional network. For salt (2), the iodide anion is involved in one N—H…I hydrogen bond, two C—H…I hydrogen bonds and one C—Cl…I halogen bond; additional C—H…F and C—F…F interactions link the cations and anions into a three‐dimensional arrangement.  相似文献   

13.
Hydrazone derivatives exhibit a wide range of biological activities, while pyrazolo[3,4‐b]quinoline derivatives, on the other hand, exhibit both antimicrobial and antiviral activity, so that all new derivatives in these chemical classes are potentially of value. Dry grinding of a mixture of 2‐chloroquinoline‐3‐carbaldehyde and 4‐methylphenylhydrazinium chloride gives (E)‐1‐[(2‐chloroquinolin‐3‐yl)methylidene]‐2‐(4‐methylphenyl)hydrazine, C17H14ClN3, (I), while the same regents in methanol in the presence of sodium cyanoborohydride give 1‐(4‐methylphenyl)‐4,9‐dihydro‐1H‐pyrazolo[3,4‐b]quinoline, C17H15N3, (II). The reactions between phenylhydrazinium chloride and either 2‐chloroquinoline‐3‐carbaldehyde or 2‐chloro‐6‐methylquinoline‐3‐carbaldehyde give, respectively, 1‐phenyl‐1H‐pyrazolo[3,4‐b]quinoline, C16H11N3, (III), which crystallizes in the space group Pbcn as a nonmerohedral twin having Z′ = 3, or 6‐methyl‐1‐phenyl‐1H‐pyrazolo[3,4‐b]quinoline, C17H13N3, (IV), which crystallizes in the space group R. The molecules of compound (I) are linked into sheets by a combination of N—H…N and C—H…π(arene) hydrogen bonds, and the molecules of compound (II) are linked by a combination of N—H…N and C—H…π(arene) hydrogen bonds to form a chain of rings. In the structure of compound (III), one of the three independent molecules forms chains generated by C—H…π(arene) hydrogen bonds, with a second type of molecule linked to the chains by a second C—H…π(arene) hydrogen bond and the third type of molecule linked to the chain by multiple π–π stacking interactions. A single C—H…π(arene) hydrogen bond links the molecules of compound (IV) into cyclic centrosymmetric hexamers having (S6) symmetry, which are themselves linked into a three‐dimensional array by π–π stacking interactions.  相似文献   

14.
Two spiro[indoline‐3,3′‐pyrrolizine] derivatives have been synthesized in good yield with high regio‐ and stereospecificity using one‐pot reactions between readily available starting materials, namely l ‐proline, substituted 1H‐indole‐2,3‐diones and electron‐deficient alkenes. The products have been fully characterized by elemental analysis, IR and NMR spectroscopy, mass spectrometry and crystal structure analysis. In (1′RS ,2′RS ,3SR ,7a′SR )‐2′‐benzoyl‐1‐hexyl‐2‐oxo‐1′,2′,5′,6′,7′,7a′‐hexahydrospiro[indoline‐3,3′‐pyrrolizine]‐1′‐carboxylic acid, C28H32N2O4, (I), the unsubstituted pyrrole ring and the reduced spiro‐fused pyrrole ring adopt half‐chair and envelope conformations, respectively, while in (1′RS ,2′RS ,3SR ,7a′SR )‐1′,2′‐bis(4‐chlorobenzoyl)‐5,7‐dichloro‐2‐oxo‐1′,2′,5′,6′,7′,7a′‐hexahydrospiro[indoline‐3,3′‐pyrrolizine], which crystallizes as a partial dichloromethane solvate, C28H20Cl4N2O3·0.981CH2Cl2, (II), where the solvent component is disordered over three sets of atomic sites, these two rings adopt envelope and half‐chair conformations, respectively. Molecules of (I) are linked by an O—H…·O hydrogen bond to form cyclic R 66(48) hexamers of (S 6) symmetry, which are further linked by two C—H…O hydrogen bonds to form a three‐dimensional framework structure. In compound (II), inversion‐related pairs of N—H…O hydrogen bonds link the spiro[indoline‐3,3′‐pyrrolizine] molecules into simple R 22(8) dimers.  相似文献   

15.
The crystal structures of three quinuclidine‐based compounds, namely (1‐azabicyclo[2.2.2]octan‐3‐ylidene)hydrazine monohydrate, C7H13N3·H2O ( 1 ), 1,2‐bis(1‐azabicyclo[2.2.2]octan‐3‐ylidene)hydrazine, C14H22N4 ( 2 ), and 1,2‐bis(1‐azoniabicyclo[2.2.2]octan‐3‐ylidene)hydrazine dichloride, C14H24N42+·2Cl? ( 3 ), are reported. In the crystal structure of 1 , the quinuclidine‐substituted hydrazine and water molecules are linked through N—H…O and O—H…N hydrogen bonds, forming a two‐dimensional array. The compound crystallizes in the centrosymmetric space group P21/c. Compound 2 was refined in the space group Pccn and exhibits no hydrogen bonding. However, its hydrochloride form 3 crystallizes in the noncentrosymmetric space group Pc. It shows a three‐dimensional network structure via intermolecular hydrogen bonding (N—H…C and N/C—H…Cl). Compound 3 , with its acentric structure, shows strong second harmonic activity.  相似文献   

16.
Aminoalkanol and aroxyalkyl derivatives are known as potential anticonvulsants. Two new salts, namely bis{(R,S)‐N‐[2‐(2,6‐dimethylphenoxy)ethyl]‐1‐hydroxypropan‐2‐aminium} succinate ( 1s ), C13H22NO2+·0.5C4H4O42−, and bis{(S)‐(+)‐N‐[2‐(2,6‐dimethylphenoxy)ethyl]‐1‐hydroxypropan‐2‐aminium} succinate ( 2s ), C13H22NO2+·0.5C4H4O42−, have been prepared and characterized by single‐crystal X‐ray diffraction. The N atoms are protonated by proton transfer from succinic acid. Salt 1s crystallizes in the space group P21/n with one cation and half an anion in the asymmetric unit across an inversion centre, while ( 2s ) crystallizes in the space group P21 with four cations and two anions in the asymmetric unit. The hydroxy group of the cation of 1s is observed in two R/S disorder positions. The crystals of these two salts display similar supramolecular architectures (i.e. two‐dimensional networks), built mainly by intermolecular N+—H…Oδ− and O—H…Oδ− hydrogen bonds, where `δ−' represents a partial charge. The succinate anions are engaged in hydrogen bonds, not only with protonated N atoms, but also with hydroxy groups.  相似文献   

17.
4‐Antipyrine [4‐amino‐1,5‐dimethyl‐2‐phenyl‐1H‐pyrazol‐3(2H)‐one] and its derivatives exhibit a range of biological activities, including analgesic, antibacterial and anti‐inflammatory, and new examples are always of potential interest and value. 2‐(4‐Chlorophenyl)‐N‐(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)acetamide, C19H18ClN3O2, (I), crystallizes with Z′ = 2 in the space group P, whereas its positional isomer 2‐(2‐chlorophenyl)‐N‐(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)acetamide, (II), crystallizes with Z′ = 1 in the space group C2/c; the molecules of (II) are disordered over two sets of atomic sites having occupancies of 0.6020 (18) and 0.3980 (18). The two independent molecules of (I) adopt different molecular conformations, as do the two disorder components in (II), where the 2‐chlorophenyl substituents adopt different orientations. The molecules of (I) are linked by a combination of N—H…O and C—H…O hydrogen bonds to form centrosymmetric four‐molecule aggregates, while those of (II) are linked by the same types of hydrogen bonds forming sheets. The related compound N‐(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)‐2‐(3‐methoxyphenyl)acetamide, C20H21N3O3, (III), is isomorphous with (I) but not strictly isostructural; again the two independent molecules adopt different molecular conformations, and the molecules are linked by N—H…O and C—H…O hydrogen bonds to form ribbons. Comparisons are made with some related structures, indicating that a hydrogen‐bonded R22(10) ring is the common structural motif.  相似文献   

18.
The isostructural salts benzene‐1,2‐diaminium bis(pyridine‐2‐carboxylate), 0.5C6H10N22+·C6H4NO2?, (1), and 4,5‐dimethylbenzene‐1,2‐diaminium bis(pyridine‐2‐carboxylate), 0.5C8H14N22+·C6H4NO2?, (2), and the 1:2 benzene‐1,2‐diamine–benzoic acid cocrystal, 0.5C6H8N2·C7H6O2, (3), are reported. All of the compounds exhibit extensive N—H…O hydrogen bonding that results in interconnected rings. O—H…N hydrogen bonding is observed in (3). Additional π–π and C—H…π interactions are found in each compound. Hirshfeld and fingerprint plot analyses reveal the primary intermolecular interactions and density functional theory was used to calculate their strengths. Salt formation by (1) and (2), and cocrystallization by (3) are rationalized by examining pKa differences. The R22(9) hydrogen‐bonding motif is common to each of these structures.  相似文献   

19.
Four crystal structures of 2‐amino‐N‐(dimethylphenoxyethyl)propan‐1‐ol derivatives, characterized by X‐ray diffraction analysis, are reported. The free base (R,S)‐2‐amino‐N‐[2‐(2,3‐dimethylphenoxy)ethyl]propan‐1‐ol, C13H21NO2, 1 , crystallizes in the space group P21/n, with two independent molecules in the asymmetric unit. The hydrochloride, (S)‐N‐[2‐(2,6‐dimethylphenoxy)ethyl]‐1‐hydroxypropan‐2‐aminium chloride, C13H22NO2+·Cl?, 2c , crystallizes in the space group P21, with one cation and one chloride anion in the asymmetric unit. The asymmetric unit of two salts of 2‐picolinic acid, namely, (R,S)‐N‐[2‐(2,3‐dimethylphenoxy)ethyl]‐1‐hydroxypropan‐2‐aminium pyridine‐2‐carboxylate, C13H22NO2+·C6H4NO2?, 1p , and (R)‐N‐[2‐(2,6‐dimethylphenoxy)ethyl]‐1‐hydroxypropan‐2‐aminium pyridine‐2‐carboxylate, C13H22NO2+·C6H4NO2?, 2p , consists of one cation and one 2‐picolinate anion. Salt 1p crystallizes in the triclinic centrosymmetric space group P, while salt 2p crystallizes in the space group P41212. The conformations of the amine fragments are contrasted and that of 2p is found to have an unusual antiperiplanar arrangement about the ether group. The crystal packing of 1 and 2c is dominated by hydrogen‐bonded chains, while the structures of the 2‐picolinate salts have hydrogen‐bonded rings as the major features. In both salts with 2‐picolinic acid, the specific R12(5) hydrogen‐bonding motif is observed. Structural studies have been enriched by the generation of fingerprint plots derived from Hirshfeld surfaces.  相似文献   

20.
Molecular crystals exhibiting polar symmetry are important paradigms for developing new electrooptical materials. Though accessing bulk polarity still presents a significant challenge, in some cases it may be rationalized as being associated with the specific molecular shapes and symmetries and subtle features of supramolecular interactions. In the crystal structure of 3,5,7‐trinitro‐1‐azaadamantane, C9H12N4O6, the polar symmetry of the molecular arrangement is a result of complementary prerequisites, namely the C3v symmetry of the molecules is suited to the generation of polar stacks and the inherent asymmetry of the principal supramolecular bonding, as is provided by NO2(lone pair)…NO2(π‐hole) interactions. These bonds arrange the molecules into a trigonal network. In spite of the apparent simplicity, the structure comprises three unique molecules (Z′ =  +  + ), two of which are donors and acceptors of three N…O interactions and the third being primarily important for weak C—H…O hydrogen bonding. These distinct structural roles agree with the results of Hirshfeld surface analysis. A set of weak C—H…O and C—H…N hydrogen bonds yields three kinds of stacks. The orientation of the stacks is identical and therefore the polarity of each molecule contributes additively to the net dipole moment of the crystal. This suggests a special potential of asymmetric NO2(lone pair)…NO2(π‐hole) interactions for the supramolecular synthesis of acentric materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号