首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
d ‐Fructose modified poly(ε‐caprolactone)‐polyethylene glycol (PCL‐PEG‐Fru) diblock amphiphile is synthesized via Cu(I)‐catalyzed click chemistry, which self‐assembles with D‐α‐tocopheryl polyethylene glycol 1000 succinate (TPGS) into PCL‐PEG‐Fru/TPGS mixed micelles (PPF MM). It has been proven that glucose transporter (GLUT)5 is overexpressed in MCF‐7 cells other than L929 cells. In this study, PPF MM exhibit a significantly higher uptake efficiency than fructose‐free PCL‐PEG‐N3/TPGS mixed micelles in both 2D MCF‐7 cells and 3D tumor spheroids. Also, the presence of free d ‐fructose competitively inhibits the internalization of PPF MM in MCF‐7 cells other than L929 cells. PPF MM show selective tumor accumulation in MCF‐7 breast tumor bearing mice xenografts. Taken together, PPF MM represent a promising nanoscale carrier system to achieve GLUT5‐mediated cell specific delivery in cancer therapy.

  相似文献   


2.
Melanin is an effective absorber of light and can extend to near infrared (NIR) regions. In this study, a natural melanin is presented as a photothermal therapeutic agent (PTA) because it provides a good photothermal conversion efficiency, shows biodegradability, and does not induce long‐term toxicity during retention in vivo. Poloxamer solution containing melanin (Pol–Mel) does not show any precipitation and shows sol–gel transition at body temperature. After irradiation from 808 nm NIR laser at 1.5 W cm−2 for 3 min, the photothermal conversion efficiency of Pol–Mel is enough to kill cancer cells in vitro and in vivo. The tumor growth of mice bearing CT26 tumors treated with Pol–Mel injection and laser irradiation is suppressed completely without recurrence postirradiation. All these results indicate that Pol–Mel can become an attractive PTA for photothermal cancer therapy.

  相似文献   


3.
A simple and rapid process for multiscale printing of bioinks with dot widths ranging from hundreds of microns down to 0.5 μm is presented. The process makes use of spontaneous surface charges generated pyroelectrically that are able to draw little daughter droplets directly from the free meniscus of a mother drop through jetting (“p‐jet”), thus avoiding time‐consuming and expensive fabrication of microstructured nozzles. Multiscale can be easily achieved by modulating the parameters of the p‐jet process. Here, it is shown that the p‐jet allows us to print well‐defined adhesion islands where NIH‐3T3 fibroblasts are constrained to live into cluster configurations ranging from 20 down to single cell level. The proposed fabrication approach can be useful for high‐throughput studies on cell adhesion, cytoskeleton organization, and stem cell differentiation.

  相似文献   


4.
Aggregation‐caused quenching (ACQ) is a general phenomenon that is faced by traditional fluorescent polymers. Aggregation‐induced emission (AIE) is exactly opposite to ACQ. AIE molecules are almost nonemissive in their molecularly dissolved state, but they can be induced to show high fluorescence in the aggregated or solid state. Incorporation of AIE phenomenon into polymer design has yielded various polymers with AIE characteristics. In this review, the recent progress of AIE polymers for biological applications is summarized.

  相似文献   


5.
Oligo(Glu70co‐Leu30), a peptide synthesized by protease catalysis, is functionalized at the N‐terminus with a 4‐pentenoyl unit and grafted to polyLSL[6′Ac,6″Ac], a glycopolymer prepared by ring‐opening metathesis polymerization of lactonic sophorolipid diacetate. First, polyLSL[6'Ac,6”Ac] fiber mats are fabricated by electrospinning. Oxidation of the fiber mats and subsequent reaction with cysteamine lead to thiol‐functionalized fiber mats with no significant morphology changes. Grafting of the alkene‐modified oligopeptide to thiol‐functionalized polyLSL[6′Ac,6″Ac] fiber mats is achieved via “thiol‐ene” click reaction. X‐ray photoelectron spectroscopy analysis to characterize peptide grafting reveals that about 50 mol% of polyLSL[6′Ac,6′′Ac] repeat units at fiber surfaces are decorated with a peptide moiety, out of which about 1/3 of the oligo(Glu70co‐Leu30) units are physically adsorbed to polyLSL[6′Ac,6′′Ac]. The results of this work pave the way to precise engineering of polyLSL fiber mats that can be decorated with a potentially wide range of molecules that tailor surface chemistry and biological properties.

  相似文献   


6.
Recombinant protein design allows modular protein domains with different functionalities and responsive behaviors to be easily combined. Inclusion of these protein domains can enable recombinant proteins to have complex responses to their environment (e.g., temperature‐triggered aggregation followed by enzyme‐mediated cleavage for drug delivery or pH‐triggered conformational change and self‐assembly leading to structural stabilization by adjacent complementary residues). These “smart” behaviors can be tuned by amino acid identity and sequence, chemical modifications, and addition of other components. A wide variety of domains and peptides have smart behavior. This review focuses on protein designs for self‐assembly or conformational changes due to stimuli such as shifts in temperature or pH.

  相似文献   


7.
Herein, a kind of dual acid‐sensitive nanoparticles based on monomethoxy poly(ethylene glycol)‐imine‐β‐cyclodextrin is constructed by a facile phenylboronic acid‐cross‐linked way. The data of dynamic light scattering and transmission electron microscope reveal the cross‐linked nanoparticles have improved stability. The cross‐linked nanoparticles could easily self‐assemble and load the anticancer drug at neutral pH condition. However, when the drug‐loaded nanoparticles are delivered to extracellular tumor sites (pH ≈6.8), the surface of the nanoparticles would be amino positively charged and easily internalized by tumor cell due to the cleavage of the acid‐labile benzoic–imine. Subsequently, with the acidity in subcellular compartments significantly increasing (such as the endosome pH ≈5.3), the loaded drug would fast release from the endocytosis carriers due to the hydrolysis of boronate ester. These features suggest that these dual acid‐sensitive cross‐linked nanoparticles not only possess excellent biocompatibility but also can efficiently load and deliver anticancer drug into tumor cells to enhance the inhibition of cellular proliferation, outlining a favorable platform as drug carriers.

  相似文献   


8.
Cell sheet transplantation is a key tissue engineering technology. A vascular endothelial growth factor (VEGF)‐releasing fiber mat is developed for the transplantation of multilayered cardiomyocyte sheets. Poly(vinyl alcohol) fiber mats bearing poly(lactic‐co‐glycolic acid) nanoparticles that incorporate VEGF are fabricated using electrospinning and electrospray methods. Six‐layered cardiomyocyte sheets are transplanted with a VEGF‐releasing mat into athymic rats. After two weeks, these sheets produce thicker cardiomyocyte layers compared with controls lacking a VEGF‐releasing mat, and incorporate larger‐diameter blood vessels containing erythrocytes. Thus, local VEGF release near the transplanted cardiomyocytes induces vascularization, which supplies sufficient oxygen and nutrients to prevent necrosis. In contrast, cardiomyocyte sheets without a VEGF‐releasing mat do not survive in vivo, probably undergo necrosis, and are reduced in thickness. Hence, these VEGF‐releasing mats enable the transplantation of multilayered cardiomyocyte sheets in a single procedure, and should expand the potential of cell sheet transplantation for therapeutic applications.

  相似文献   


9.
Poly(di(ethylene glycol)methyl ether methacrylate) (PDEGMA) brushes, which are known to suppress protein adsorption and prevent cell attachment, are reported here to possess interesting and tunable thermoresponsive behavior, if the brush thickness is reduced or the grafting density is altered. PDEGMA brushes with a dry ellipsometric thickness of 5 ± 1 nm can be switched from cell adherent behavior at 37 °C to cell nonadherent at 25 °C. This behavior coincides with the temperature‐dependent irreversible adsorption of fibronectin from phosphate saline buffer and proteins present in the cell culture medium, as unveiled by surface plasmon resonance measurements. Unlike for tissue culture polystyrene reference surfaces, swelling of the PDEGMA chains below the lower critical solution temperature results in the absence of paxillin and actin containing cellular filaments responsible for cell attachment. These tunable properties of very thin homopolymer PDEGMA brushes render this system interesting as an alternative thermoresponsive layer for continuous cell culture or enzyme‐free cell culture systems.

  相似文献   


10.
The phase behavior of a dendritic amphiphile containing a Newkome‐type dendron as the hydrophilic moiety and a cholesterol unit as the hydrophobic segment is investigated at the air–liquid interface. The amphiphile forms stable monomolecular films at the air–liquid interface on different subphases. Furthermore, the mineralization of calcium phosphate beneath the monolayer at different calcium and phosphate concentrations versus mineralization time shows that at low calcium and phosphate concentrations needles form, whereas flakes and spheres dominate at higher concentrations. Energy‐dispersive X‐ray spectroscopy, X‐ray photoelectron spectroscopy, and electron diffraction confirm the formation of calcium phosphate. High‐resolution transmission electron microscopy and electron diffraction confirm the predominant formation of octacalcium phosphate and hydroxyapatite. The data also indicate that the final products form via a complex multistep reaction, including an association step, where nano‐needles aggregate into larger flake‐like objects.

  相似文献   


11.
Here, the synthesis and characterization of three improved nanosystems is presented based on amino functionalized hyperbranched polyglycerol (hPG; Mw = 16.8 kDa) as potential copper(ii ) chelators. The ligands, N‐methyl‐N‐picolylglycine amide, 2,6‐pyridine dicarboxylic acid monoamide, and cyclam tetraacetic acid (TETA) monoamide, are covalently attached to the polymer with amide bonds. In this paper, the Cu(ii ) loading capacity, the stability of the Cu(ii )‐loaded carriers at different pHs, with competing ligands and in human serum, as well as the transport of Cu(ii ) in biological systems are investigated. For the first time, a different cytotoxicity of functionalized polymer nanoparticles with and without Cu(ii ) is observed. The cyclam‐based carrier combines the highest loading capacity (29 Cu ions/nanoparticle), best stability with respect to pH and EDTA (45% remaining Cu after 24 h), lowest cytotoxicity (IC50 > 100 × 10?6m (unloaded), 1500 × 10?6m Cu(ii ); Cu:carrier 29:1), and the highest stability in human serum.

  相似文献   


12.
There is increasing interest in the synthesis of low molecular weight heparin and heparan sulfate mimetic polymers because of their various potential biomedical applications. The functional activity of heparin and heparan sulfate is believed to arise from the presence of a number of functional groups, such as hydroxyl, carboxylate and sulfate groups. The design and synthesis of novel heparin‐mimetic polymers with a particular functionality poses a formidable challenge and requires carefully control of the selective conversion of functional groups on the polymer chain. Here, this study describes a simple and efficient synthetic protocol for the preparation of heparin‐mimetic linear polyglycidol copolymers based on the selective conversion of primary hydroxyl groups to carboxylic acids under ruthenium‐catalyzed selective dehydrogenation in basic aqueous solution. To achieve the anticoagulant activity of these polymers, primary hydroxyl groups are selectively converted to sulfate groups. The anticoagulant activity of the heparin mimics is studied by rotational thromboelastometry using EXTEM and INTEM assays. The environmentally benign process described herein provides an attractive route for the synthesis of heparin‐mimetic polymers with tailored functions such as anticoagulant activity.

  相似文献   


13.
In this study, heparin‐mimicking hydrogel thin films are covalently attached onto poly(ether sulfone) membrane surfaces to improve anticoagulant property. The hydrogel films display honeycomb‐like porous structure with well controlled thickness and show long‐term stability. After immobilizing the hydrogel films, the membranes show excellent anticoagulant property confirmed by the activated partial thromboplastin time values exceeding 600 s. Meanwhile, the thrombin time values increase from 20 to 61 s as the sodium allysulfonate proportions increase from 0 to 80 mol%. In vitro investigations of protein adsorption and blood‐related complement activation also confirm that the membranes exhibit super‐anticoagulant property. Furthermore, gentamycin sulfate is loaded into the hydrogel films, and the released drug shows significant inhibition toward E. coli bacteria. It is believed that the surface attached heparin‐mimicking hydrogel thin films may show high potential for the applications in various biological fields, such as blood contacting materials and drug loading materials.

  相似文献   


14.
In this contribution, amphiphilic star copolymers (H40‐star‐PCL‐a‐PEG) with an H40 hyperbranched polyester core and poly(ε‐caprolactone)‐a‐poly(ethylene glycol) copolymer arms linked with acetal groups are synthesized using ring‐opening polymerization and a copper (I)‐catalyzed alkyne‐azide cycloaddition click reaction. The acid‐cleavable acetal groups between the hydrophilic and hydrophobic segments of the arms endow the amphiphilic star copolymers with pH responsiveness. In aqueous solution, unimolecular micelles can be formed with good stability and a unique acid degradability, as is desirable for anticancer drug carriers. For the model drug of doxorubicin, the in vitro release behavior, intracellular release, and inhibition of proliferation of HeLa cells show that the acid‐cleavable unimolecular micelles with anticancer activity can be dissociated in an acidic environment and efficiently internalized by HeLa cells. Due to the acid‐cleavable and biodegradable nature, unimolecular micelles from amphiphilic star copolymers are promising for applications in intracellular drug delivery for cancer chemotherapy.

  相似文献   


15.
Biocompatible and antibacterial hydrogels have received increasing attention for preventing local bacterial infections. In this study, a type of polysaccharide hydrogels is prepared via the Schiff‐based reaction at physiological conditions. The gelation time and mechanical property of the hydrogels are found to be dependent on the polysaccharide concentration and the polysaccharide weight ratio. 3‐(4,5‐Dimethyl‐thiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide assay and live/dead assay indicate that the hydrogels display nontoxicity in vitro. After subcutaneous injection into rats, the hydrogels exhibit an acceptable biocompatibility in vivo. Furthermore, the bacterial inhibition tests by shaking flask method and agar disc‐diffusion method demonstrate that the ceftriaxone‐sodium‐loaded hydrogels have remarkable antibacterial properties in vitro. The in vivo anti‐infective tests further display that the antibiotic‐loaded hydrogels display excellent anti‐infective efficacies in both superficial and deep tissue infection. Consequently, the injectable and biocompatible polysaccharide hydrogels may serve as promising platforms for localized, sustained delivery of antibiotics for preventing local infections.

  相似文献   


16.
This article reports the behavior of embryonic neural stem cells on a hydrogel that combines cationic, non‐specific cell adhesion motifs with glycine‐arginine‐glycine‐aspartic acid‐serine‐phenylalanine (GRGDSF)‐peptides as specific cell adhesion moieties. Therefore, three hydrogels are prepared by free radical polymerization that contains either a GRGDSF‐peptide residue ( P1 ), amino ethylmethacrylate as a cationic residue ( P2 ), or a combination of both motifs ( P3 ). For each gel, cross linker concentrations of 8 mol% is used to have a comparable gel stiffness of 8–9 kPa. The cell experiments indicate a synergistic effect of the non‐specific, cationic residues, and the specific GRGDSF‐peptides on embryonic neural stem cell behavior that is especially pronounced in the cell adhesion experiments by more than doubling the number of cells after 72 h when comparing P3 with P2 and is less pronounced in the proliferation and differentiation experiments.

  相似文献   


17.
Cell sorting is important for cell biology and regenerative medicine. A visible light‐responsive cell scaffold is produced using gold nanoparticles and collagen gel. Various kinds of cells are cultured on the visible light‐responsive cell scaffold, and the target cells are selectively detached by photoirradiation without any cytotoxicity. This is a new image‐guided cell sorting system.

  相似文献   


18.
Solution behavior of thermo‐responsive polymers and their complexes with biological macromolecules may be affected by environmental conditions, such as the concentration of macromolecular components, pH, ion concentration, etc. Therefore, a thermo‐responsive polymer and its complexes should be characterized in detail to observe their responses against possible environments under physiological conditions before biological applications. To briefly indicate this important issue, thermo‐responsive block copolymer of quaternized poly(4‐vinylpyridine) and poly(oligoethyleneglycol methyl ether methacrylate) as a potential nonviral vector has been synthesized. Polyelectrolyte complexes of this copolymer with the antisense oligonucleotide of c‐Myc oncogene are also thermo‐responsive but, have lower LCST (lower critical solution temperature) values compared to individual copolymer. LCST values of complexes decrease with molar ratio of macromolecular components and presence of salt. Dilution of solutions also affects solution behavior of complexes and causes a significant decrease in size and an increase in LCST, which indicates possible effects of severe dilutions in the blood stream.

  相似文献   


19.
Cellulose phenyl carbonates are an excellent platform to synthesize a broad variety of soluble and functional cellulose carbamates. In this study, the synthesis of cellulose carbamates with terminal amino groups, namely ω‐aminoethylcellulose‐ and ω‐aminoethyl‐p‐aminobenzyl‐cellulose carbamate, is discussed. The products are well soluble and their structures can be clearly described by NMR spectroscopy. The cellulose carbamates exhibit a bactericide and fungicide activity in vitro. The ω‐aminoethylcellulose carbamate possesses a strong activity against Candida albicans and Staphylococcus aureus (IC50 of 0.02 mg mL?1 and 0.05 mg mL?1). The antimicrobial activity and cytotoxicity can be improved by p‐amino‐benzylamine (ABA) as an additional substituent. The mixed cellulose carbamate exhibits a high biocompatibility (LC50 of 3.18 mg mL?1) and forms films on cotton and PES, which exhibit a strong activity against S. aureus and Klebsiella pneumoniae.

  相似文献   


20.
New macromolecules such as dendrimers are increasingly needed to drive breakthroughs in diverse areas, for example, healthcare. Here, the authors report hybrid antimicrobial dendrimers synthesized by functionalizing organometallic dendrimers with quaternary ammonium groups or 2‐mercaptobenzothiazole. The functionalization tunes the glass transition temperature and antimicrobial activities of the dendrimers. Electron paramagnetic resonance spectroscopy reveals that the dendrimers form free radicals, which have significant implications for catalysis and biology. In vitro antimicrobial assays indicate that the dendrimers are potent antimicrobial agents with activity against multidrug‐resistant pathogens such as methicillin‐resistant Staphylococcus aureus and vancomycin‐resistant Enterococcus faecium as well as other microorganisms. The functionalization increases the activity, especially in the quaternary ammonium group‐functionalized dendrimers. Importantly, the activities are selective because human epidermal keratinocytes cells and BJ fibroblast cells exposed to the dendrimers are viable after 24 h.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号